PROBLEM SOLVING
" USING C PROGRAMMING

" Bachelor of Computer Application
L SEMESTER - | y

GURU NANAK COLLEGE(Autonomous)

VELACHERY ROAD, CHENNAI - 600042
(Re-Accredited ‘A’ grade by NAAC)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L Syllabus

= Planning the Computer Program:
= Problem definition,
= Program design,
= Debugging,
= Types of Errors in programming,
= Techniques of Problem Solving: Flowcharting, Algorithms.

= C Fundamentals:
= Character set
= Identifiers and Keywords
= Data Types
= Constants - Variables
= Declarations - Expressions - Statements

=« Operators: Arithmetic, Unary, Relational and Logical,
Assignment and Conditional.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Related Books

Recommended Books:

= P. K. Sinha & Priti Sinha, “Computer Fundamentals”, BPB Publications, 6t Edition.

= Dr. Anita Goel, Computer Fundamentals, Pearson Education, 2010.

= E. Balaguruswamy, 2016, 7th Edition, Programming in ANSI C, TMH Publishing Company Ltd.
= Kanetkar Y., 1999, Let us C, BPB Pub., New Delhi.

Reference Books:

K.R.Venugopal,Programming with C,1997,McGraw-Hill

Varalakshmi,Programming using C,2000(Reprint July 2001), V.Ramesh5

R.Rajaram,C Programming Made Easy,V.Ramesh

B.W. Kernighan and D.M.Ritchie, 1988, The C Programming Language, 2" Edition, PHI.
H. Schildt, C,2004, The Complete Reference, 4th Edition, TMH

Gottfried. B.S, 1996, Programming with C, Second Edition, TMH Pub. Co. Ltd., New Delhi.

Websites:
= http://www.cprogramming.com/
= http://www.richardclegg.org/previous/ccourse/

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.1 PROBLEM DEFINITION

= The computer is the symbol- manipulating machine that

follows the set of instructions called a program. Any
computing has to be performed independently without
depending on the programming language and the
computer.

= The problem solving techniques involves the following
steps

= Define the problem.

= Formulate the mathematical model.
= Develop an algorithm.

= Write the code for the problem.

= Test the program.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.1 PROBLEM DEFINITION

1) Define the Problem

= A clear and concise problem statement is provided.
= The problem definition should specify the input and output.

= Full knowledge about the problem is needed.

Fxample: TO FIND THE AVERAGE OF TWO NUMBERS.

2) Formulate the Mathematical Problem
= Any technical problem provided can be solved mathematically.

= Full knowledge about the problem should be provided along with
the underlying mathematical concept.

txample: (datal+data2)/2

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.1 PROBLEM DEFINITION

3) Develop an Algorithm
= An algorithm is the sequence of operations to be performed.
= It gives the precise plan of the problem.
= An algorithm can be of flowchart or pseudo code. Example:

=) ..() FT) ' V. Firliri 5
ST

TO FIND THE AVERAGE OF TWO NUMBERS.

. Set the sum of the data values to 0.
. Set the count of the data values to zero.

;. As long as the data values exist, add the next data value to
the sum and add 1 to the count.

+. To compute the average, divide the sum by the count.
. Print the average.

To find the average of 20 and 30 manually.
20 + 30=50 ; 50/2 =25.

=t 1.1 PROBLEM DEFINITION

4)

5)

Write the Code for the Problem

= The algorithm developed must be converted to any programming
language.

= The compiler will convert the program code to the machine
language which the computer can understand.

Test the Program

« Testing involves checking errors both syntactically and
semantically.

= The errors are called as “bugs”.

= When the compiler finds the bugs, it prevents compiling the code
from programming language to machine language.

= Check the program by providing a set of data for testing.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

| 1.2 PROGRAM

= A program consists of a series of instructions that a computer
processes to perform the required operation.

= Set of computer programs that describe the program are called
software.

= The process of software development is called Programming and
the person who develops the computer programs are called
Programmer.

= Thus, in order to design a program, a programmer must determine
three basic requirements:

= The instructions to be performed.
= The order in which those instructions are to be performed.

= The data required to perform those instructions.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.2 PROGRAM

=
VvVarmmlaes
y X]

1 =

= WRITE A PROGRAM TO ADD TWO NUMBERS

Input two numbers.
Add these two numbers.

Display the output.

= Suppose we want to calculate the sum of two numbers, A and B,
and store the sum in C, here A and B are the inputs, addition is the
process. and C is the output of the proaram.

l > C=A+B I > C

Input Processing Output

A, B

Fig Processing of the data

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.2 PROGRAM

Characteristics of a Program
= Any computer program should have the following characteristics

= Accuracy of calculations. Any calculation made in the program
should be correct and accurate.

= Clarity: 1t refers to the overall readability of the program which
helps the user to understand the underlying program logic easily
without much difficulty.

= Modularity: When developing any program, the task is sub divided
into several modules or subtasks. These modules are developed
independently (i.e.) each task does not depend on the other task.

= Portability. Portability is defined as the ability to run the
application program on different platforms.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.2 PROGRAM

= Flexibility: Any program written should be flexible (i.e.) the
program should be developed in such a way that it can handle the
most of the changes without rewriting the entire program.

= Efficiency: Any program needs certain memory and processing
time to process the data. This memory and processing unit should
be of least amount. This is the efficiency of the program.

= Generality: The program should be in general. If a program is
developed for a specific task then it can be used for all the similar
tasks in the same domain.

= Documentation: any application program developed should be
well documented such that even in the absence of the developer
and the author, the programmers could be able to understand the
concept behind it.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.3 PROGRAM DEVELOPMENT CYCLE

= Any program has to be broken into a series of smaller steps.
= These series are independent of programming language.

= The programmer should have wide knowledge about the problem
and the way to solve it.

= Generally any problem solving involves

= Defining the problem.
= Understanding the problem.

= Providing the solution.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.3 PROGRAM DEVELOPMENT CYCLE

= The program development cycle involves

= Problem Analysis.

= Design- Algorithm and Flowchart development.
= Program coding.

= Program compilation and execution.

= Program debugging and Testing.

= Documentation.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.3 PROGRAM DEVELOPMENT CYCLE

FROBLEMM AMASALYSIES

DNESl P - iR T H M,
FLOWASTTC HORT

P ROCZSROO R OOy R

DFEERENGEEI MNMIG & TES T MGG

))))

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.3 PROGRAM DEVELOPMENT CYCLE

1. Problem Analysis
= Define the problem by identifying the input and output of it.
= Variable name is assigned for each item.

= After analyzing, the programmer has to develop various solutions for the
given problem.

= Optimal solution is taken from the set of solutions obtained.
2. Design — Algorithm & Flowchart Development

= Algorithm and flowchart are developed to provide a sequence of actions
to be performed.

= Algorithm provides a basic logic in solving the problem by providing
sequence of instructions.

= Algorithm can be of
Flow chart
Pseudo Code.

= Program Design Language (PDL) : 1t has no specific standard rules
for defining the PDL statements. PDL is independent of any
programming language. It is also called as Pseudo Code.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t. 1.3 PROGRAM DEVELOPMENT CYCLE

3.

Program Coding
= Code the algorithm in the selected programming language.

= The processes of translating the algorithm or the flowchart into
an exact instruction that will make up the program are called
program coding.

Program Compilation and Execution

=« After program coding, the program has to be compiled and
executed.

= During compilation, if no error is produced, then the program is
executed successfully.

« If errors are available, then the errors are displayed in the
terminal, and corrected later with correct syntax and then
compiled.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.3 PROGRAM DEVELOPMENT CYCLE

s. Program Debugging and Testing
= Errors are called as " bugs”

= Errors can be categorized as follows

= Syntax errors(during compilation).

Program does not compile, missing bracket, bad
punctuation.

= Run time (during execution)
=xample: Program crashes, Check input data.

= Logical (incorrect or illogical answers) Example: Program runs
and give wrong output.

6. Documentation

= Once the programmer is free from the errors, it is the duty of the
programmer to document all the necessary documents which is
provided to the program users as manual.

= Helps the user to operate correctly.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.4 ALGORITHM

= Algorithms are one of the most basic tools that are used to develop
the problem solving logic.

= An algorithm is defined as a finite sequence of explicit instructions
that, when provided with a set of input values produces an output
and then terminates.

= In algorithm, after a finite number of steps, solution of the problem
is achieved.

= Algorithms can have steps that repeat (iterate) or require decisions
(logic and comparison) until the task is completed.

= Different algorithms may accomplish the same task, with a different
set of instructions, in more or less the same time, space, and
efforts.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.4 ALGORITHM

= To determine the largest number out of three numbers A, B, and C
= Step 1: Start
= Step 2: Read three numbers say A, B, C

= Step 3: Find the larger number between A and B and store it in
MAX_AB

= Step 4: Find the larger number between MAX_AB and C and store
it in MAX Step 5: Display MAX
= Step 6: Stop
= The above-mentioned algorithm terminates after six steps. This
explains the feature of finiteness. Every action of the algorithm is
precisely defined; hence, there is no scope for ambiguity. Once the

solution is properly designed, the only job left is to code that logic
into @ programming language.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.4 ALGORITHM

Characteristics of Algorithm

= An algorithm has five main characteristics:
= It should have finite number of inputs.
= Terminates after a finite humber of steps.
= Instructions are precise and unambiguous.

= Operations are done exactly and in a finite amount of
time.

«Outputs are derived from the input by applying the
algorithm

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.4 ALGORITHM

Quality of Algorithm

= There are few factors that determine the quality of a
given algorithm

= An algorithm should be relatively fast.

=Any algorithm should require minimum computer
memory to produce the desired output in an acceptable
amount of time.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.5 FLOWCHART

= Flowchart is a diagrammatic representation of an algorithm that
illustrates the sequence of operations to be performed to get a

solution.

= The different boxes are interconnected with the help of arrows.

= The boxes represent operations and the arrows represent the
sequence in which the operations are implemented.

= The primary purpose of the flowchart is to help the programmer in

understanding the logic of the program.

Symbol

Symbol Name

Description

—_—

R

Flow Lines

Flow lines are used to connect symbols. These lines
indicate the sequence of stepsand the direction of
iflow of control.

IThis symbol is used to represent the beginning

]
[/

Terminal |(start), the termination (end), or halt (pause) in the
iprogram logic.
It represents information entering or leaving the
Input/output system, such as customer order (input) and

servicing (output).

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.5

FLOWCHART

Procesz symbol iz used for representng arithmetic
land data movementinsguctons It can representa

FraepeslmE single step [(add tero cups of floarT). or an endre
sub-process [make bread”) within a3 larger proces=.
D ecsion symbol denotes a3 decdsion [or branch] to
[be made. The program shonld comtinne alon s one of
A the taro routes [[E/ELSE].
Ded=sion

This symbol has one entry and bwoexitpaths. The
ipath chosen depends on whether the answer to a
gueston is Fes or mo.

commnector

Comnector symbol is nsed to join different flow
liT1es

[Thi=s syrmbol is nsed to indicate that the flowchart

Off-page .
i A contnues on the next page.
- WE Lo Dormmentis nsed to representa paper dorument

[produced during the flowchart process

FManmwmal Input

Manual input symebol represents input to be given
by a developer f programmer.

Manual
Operadon

Flanual operaton symbol shows thatthe process
has to be done by a developer,/ prosrammer.

Online Storaze

[This syimb ol represents the online data storage
such ashard disks, magnetc drams or other
storage devices

Comumunicabon
Lirlz

Communicaton link symmbkol is nsed to represent
data received or to be transmitied from an external
|zrstem

N diee

Magnetc Disk

Thiz symbol is used to representdata inputor
cutput fromm and to a magnetc dish

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.5 FLOWCHART

Guidelines for preparing flowcharts

= The following guidelines should be used for creating a flowchart:
= The flowchart should be clear, neat, and easy to follow.
= The flowchart must have a logical start and finish.

= In drawing a proper flowchart, all necessary requirements should
be listed in logical order.

= Only one flow line should come out from a process symbol.

= Only one flow line should enter a decision symbol. However, two
or three flow lines (one for each possible answer) may leave the
decision symbol.

= Only one flow line is used with a terminal symbol.

= In case of complex flowcharts, connector symbols are used to
reduce the number of flow lines.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.5 FLOWCHART

Benefits of Flowcharts

= A flowchart helps to clarify how things are currently working and
how they could-be improved. The reasons for using flowcharts as a
problem-solving tool are given below.

i. Makes Logic Clear.

i. ~Communication.

ii. Effective Analysis.

iv. Usefulin Coding.

v. Proper Testing and Debugging.
vi ~Appropriate Documentation.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.5 FLOWCHART

Limitations of Flowcharts

= Flowchart can be used for designing the basic concept of the
program in pictorial form but cannot be used for programming
purposes. Some of the limitations of the flowchart are given as

follows:
i. Complex.
i. — Costly.

ii. Difficult to Modify.
iv. ~No Update.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= C Programming,

=« Was developed by Dennis Ritchie at AT&T Bell Labs, USA in
1972.

« Is a high-level programming language used to develop
applications for high-level business programs and low-level
system programs.

= Became popular because of its power, simplicity and ease of
use.

= Enables system program writing, using pointers.
= It is reliable, simple and easy to use.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= C language has evolved from three different structured
language ALGOL, BCPL and B Language. It uses many
concepts from these languages and introduced many
new concepts such as data types, struct, pointer.

Year Developed by Drawbacks

1960 ‘ ALGOL International Group Too general and too
l ' abstract

i BCPL Martin Richard Less .P_owerful and too
l | Specific

1970 B Ken Thompson Too Specific

1973 Traditional C Dennis Ritchie

1989 ANSI C ANSI commitee

1990 ANSI/ISO C ISO commitee

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= Features of C

=Robust language, which can be used to write any
complex program.

= Has rich set of built-in functions and operators.

= Well-suited for writing both system software and
business applications.

= Efficient and faster in execution.

= Highly portable.

= Well-suited for structured programming.
= Dynamic memory allocation.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 1.6 C Fundamentals

= First C Program
= Initially, learn how to write, compile and run the C program.
= To write the first C program, open the C console.

Blue Screen Black Screen(Console)

Save= F2

Compile <alt +F9 Show output=> alt+F5

Run 2Ctrl +F9

Write programs Get output

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 1.6 C Fundamentals

= Example of C Program:
#include<stdio.h>
Void main()

d
printf(“Good Morning!”);

}

= File Edit Search Run Comp g Froje

[=]
luuludﬁ(sLdiu.h)
woid main()

{
printf (
¥

8] DOSBox 0.74, Cpu speed: max 100% cycles, Frameskip 0, Progra.. — X

C:NTURBOC3NBIN>TC
Good Morning!?

F1 Help FZ Save T3 Open Ali-F9 Compile F9 Make F10 Menu

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 1.6 C Fundamentals

= Header file is included

=« #include <stdio.h> includes the standard input
output library functions.

= The printf() function is defined in stdio.h .

=main() The main() function is the entry point of
every program in c language.

= printf() The printf() function is used to print data on
the console.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.6 C Fundamentals

= What is Compilation?

= The compilation is a process of converting the source code into
object code. It is done with the help of the compiler.

= The compiler checks the source code for the syntactical or

structural errors, and if the source code is error-free, then it
generates the object code.

#include <stdio.h>

01000000000000

int main(){ O11111111111111
01010101101010

printf("Hello C Language"); 00000011111111
. 00000111111111

return 0; 00000010101011

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= Stages of Compilation

= Like most high-level languages, C also uses compiler to convert its
source code (files with the extension .c) to object code (files with the
extension .obj).

= The object code will be link-edited by the linker to form the machine
language also known as executable codes (files with the extension .exe)

= The compilation process can be divided into four steps
= Pre-processor
= Compiler
= Assembler
= Linker

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.6 C Fundamentals

= Stages of Compilation

Source code

Preprocessor

expanded code

assembly code

Assembler

Oth«;:irI object objectcode . - res
es

v

executable code

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

Stages of Compilation
= Preprocessor

= The source code is the code which is written in a text editor and the
source code file is given an extension ".c".

= This source code is first passed to the preprocessor, and then the
preprocessor expands this code. After expanding the code, the expanded
code is passed to the compiler.

= Compiler

= The code which is expanded by the preprocessor is passed to the
compiler.

= The compiler converts this code into assembly code. Or we can say
that the C compiler converts the pre-processed code into assembly code.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

Stages of Compilation
= Assembler

= The assembly code is converted into object code by using an
assembler.

= The name of the object file generated by the assembler is the same as
the source file.

= The extension of the object file in DOS is ".obj,' and in UNIX, the
extension is '0'.

=« If the name of the source file is 'hello.c’, then the name of the object
file would be 'hello.obj'.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

Stages of Compilation
= Linker
= Mainly, all the programs written in C use library functions.

= These library functions are pre-compiled, and the object code of these
library files is stored with '.lib" (or ".a@") extension.

= The main working of the linker is to combine the object code of library
files with the object code of our program.

= The output of the linker is the executable file.

= The name of the executable file is the same as the source file but differs
only in their extensions.

= In DOS, the extension of the executable file is ".exe'

= For example, if we are using printf() function in a program, then the
linker adds its associated code in an output file.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= The Structure of a C Program
= Documentation Section
= Header File section
= Definition Section
= Global declaration section
= main() section
= Declaration part
= Execution part
= Sub program section

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.6 C Fundamentals

= Example:

/* Documentation Section */

/| File : Addition.c

/| Description : Addition of Three Numbers
// Author : Studentl23

/* Header File Section */ #include<stdio.h> #inlcude<conio.h>
/* Definition Section */

definec 3

/* Global declaration section */

int calcsum(int,int,int);

/* main() section */

int main()

{

/* Declaration part */

int a,b,sum;

/* Execution part */ printf("Enter Two numbers"); scanf("%d %d", &a, &b); sum=calcsum(a,b,c);
printf("The sum is: %d", sum);

h

/* Sub program section*/
int calcsum(int x,int y, int z)

{

intd; d=x+y+2z; returnd;

h

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.7 C Character Set

= Character set denotes alphabet, digit or special character.
Characters combine to form variables.

= Characters in C are grouped into Letters, Digits, Special characters
and White spaces. Compiler generally ignores white space when it is
not a part of string constant.

= White Space may be used to separate words, but not used between
characters of keywords or identifiers.

= The character set in C Language can be grouped into the following
categories.

1. Letters

2. Digits

Special Characters
White Spaces

(¥]

5>

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.7 C Character Set

= Alphabets
Letters Letters Digits
Upper Case A to Z Lower Case atoz 0to9

= Escape Sequences (White Space Characters)

= A character constant represents a single character. It is also
called as “Backslash Character Constant”.

=« [t is used together with input and output statements. It has no
meaning but it has the control to decide the way an input has to

be displayed.
1. Blank Space \b 2. Horizontal Tab \t
3. Carriage Return \r 4. New line \n

5. Form Feed \f 6. Vertical tab \v

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.7 C Character Set

= Special Characters

& .Ampersand # Number Sign
' Apostrophe <| .Opening Angle (Less than sign)
i Asterisk | .Period (Dot)
@ At symbol % .Percentage Sign
\ .Backslash +H .Plus Sign
A .Caret 1 .Question Mark
> .Closing Angle (Greater than sign) "l .Quotation Marks
.Colon i| -Right Flower Brace
.Comma Right Parenthesis
$ Dollar Sign] Right Bracket
= Equal to 1 .Semicolon
! .Exclamation Mark Slash
(.Left Parenthesis ~ .Tilde
[.Left Bracket _| .Underscore
§ Left Flower Brace .Vertical Bar

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

e 1.8 C TOKENS

= C TOKENS

= Among the group of text individual word, punctuation marks are called
Tokens.

= It is a smallest individual unit in a C program.
= Classification of tokens in C

3

1 _ | -_ Constants

| 6

Keywords

Operators

Classification of C Tokens

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.9 Keywords

= Keywords
= Every word in C language is a keyword or an identifier.
= Keywords in C language cannot be used as a variable name.

= The compiler specifically uses them for its own purpose and they serve
as building blocks of a ¢ program.

= The following are the Keyword set of C language.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.10 Identifiers

= Identifiers

= Identifier is a name given to program elements such as variables,
functions, procedure, arrays and soon.

= First character must be an Alphabet or Underscore.
= Identifier consists of sequence of letters, digits or combination of both.

= Rules for Identifier
= First character must be an Alphabet or Underscore(_).
= Special characters and embedded commas are not allowed.
= First 31 characters are given high priority or preference.
= Keyword cannot be used as Identifier.
= There should not be any white space.
= Both uppercase and lowercase letters are permitted.
= The underscore character is also permitted in identifiers.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=Lt 1.11 Data Types

= Data Type is used to define the type of value to be used in a Program.

= Based on the type of value specified in the program specified amount of
required Bytes will be allocated to the variables used in the program.

C Data Types

: v

Primary Data Tvypes Secondary Data Tvypes
Character Array
Integer Pointer
Float Structure
Double Union
Enumeration

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.11 Data Types

= Primary Data Type
= Integers are represented as int.
= Character are represented as char.

= Floating point value are represented as float, double precision floating
point are represented as double and finally void are primary data types.

= Primary data type offers extended data types.
= longint, longdouble are extended data types.
i. Character Data Type

= Normally a single character is defined as char data type. It is specified by
the keyword char. Char data type uses 8 bits for storage. Char may be
signed char or unsigned char.

Name C Representation Size Range Format
(bytes) Delimiter
Character char 1 -128 to 127 %cC
Signed Character | signed char 1 -128 to 127 %c
Unsigned : &
Character unsigned char 1 0 to 255 YocC

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=Lt 1.11 Data Types

i. Integer Data Type

= Integer data type can store only the whole numbers.

Name C Representation (bs;tZ:s) Range Di‘;;;ﬂ?;r
Integer int 2 -32768 to 32767 %d
Short Integer shortint / short 2 -32768 to 32767 %d
Long Integer long int / long 4 _2212%1%8316:178 © %Ild
Signed Integer signed int 2 -32768 to 32767 %u
Unsigned unsigned int 2 0 to 65535 %d
Integer
Signed Short unsigned shortint /) 32768 to 32767 %d
Integer short 0
Unsigned Short | unsigned shortint / 0
ke et 2 0 to 65535 You
Signed Long signed long int / 2 -2147483648 to %ld
Integer long 2147483647 0
Unsigned Long | unsigned long int / 4 0 to 4294967295 %lu
Integer long

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=Lt 1.11 Data Types

ii. Floating Point Data Type

= Floating Point data types are also known as Real Numbers. It can store only
the real numbers (decimal numbers) with 6 digits precision.

Name C Representation (bs;::s] Range Df;(;;n’:liztlzr
Float float 4 3.4 e-38to 3.4 e+38 %f
Double double 8 1.7e-308 to 1.7e+308 %f
Long Double long double 10 3.4 e-4932to 3.4 %lIf

e+4932

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

= Constant

«Constant is a fixed value that doesnt or does not
change during the execution of a program.

«It remains same throughout the program. Its value
cannot be altered or modified in a program.

=A variable is declared by the Keyword const. Constant
is classified into three main types.

= They are described as follows.
. Numeric Constant
i. ~ Character Constant
i. ~ Symbolic Constant.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

. Numeric Constant
= Numeric Constant is further classified into two main types. They are
= Integer Constants

= Integer constant consist of sequence of digit without decimal point. It is
normally a whole number.

= Real Constants
= Real Constants are otherwise known as Floating Point Constants.

= Real Constant consists of decimal number, exponent or combination of
both.

= Real constant consist of two forms. They are Fractional form and
Exponential form.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

i. Character Constant

= Character Constant is also known as single character constant. The
Character constant is mainly classified into three types. They are

= Single character constants
= Single character constant is also known as character constant.

= It contains single character or number enclosed within a pair of single
quotes.

= If number specified within single quotes it is considered as character
constant.

= Each character is stored in one byte or length of single character
constant is one.

= Example: valid - ‘m’ 7 o

A\ n

Invalid “A” m

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

i. Character Constant

= Character Constant is also known as single character constant. The
Character constant is mainly classified into three types. They are

= Single character constants
= Single character constant is also known as character constant.

= It contains single character or number enclosed within a pair of single
quotes.

= If number specified within single quotes it is considered as character
constant.

= Each character is stored in one byte or length of single character
constant is one.

= Example: valid - ‘m’ 7 o

A\ n

Invalid “A” m

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

i. Character Constant
= String constant

= String constant consist of sequence of characters enclosed with double
quotes.

= The character may be letters, numbers, special characters and blank
space.

= Rules for String constant

= String constant must be a single alphabet, special character or sequence
of alphabets or digits enclosed in double quotes.

= Every string constant ends with NULL character. It is automatically
assigned.

= Example: Valid "I am a Student”
= Invalid ‘I am a Student’

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.12 Constants

i. Symbolic Constant
= It represent numeric/character string constant. It is defined as follows.
#define<scname> <sctext>.

= Here schame stands for Symbolic Constant name and sctext stands for
Symbolic Constant text.

= scname is usually written in capital letters.

#define PI 3.14
const int pi=3.14

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.13 Variables

= Variable is a name given to Memory location in which data is stored.
= Variable acts as value, which changes during the execution of program.
= Variable may take different value at different times during execution.
= The general format of any declaration

datatype vi, v2, v3, vn
= where v1, v2, v3 are variable nhames. Variables are separated by commas.
= A declaration statement must end with a semicolon.

int sum;
double average, mean;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.13 Variables

1. Variable Assighment
= It is another format of variable declaration. The general form is
» data-type variable name [=value];

= Here data type refers to the type of value used in the C program. Variable
name is a valid name.

Example: inta; (or) int a=10;
= Here if the value of a is assigned 10 the value remains the same
throughout the program. If no value is specified then the value keeps on
changing.
2. Simple Variable Assighment

= TO assign a single value to a variable ‘=" equality operator is used. The
syntax is

variable-name = value;
Example: X=10; y=30;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 1.13 Variables

3. Compound Variable Assighment

= This type of variable declaration can be used together with combination of
characters, numbers or an expression. Here ‘=’ equality operator is used.

variable-name = expression
Example: Y=x+5; Z=((x+1)(y-2)*x)

4. Declaring a variable as constant

= Variable is declared as constant by using the keyword or qualifier ‘const’
before the variable name. This can be done at the time of initialization.

Example: Const int class_size = 40;

5. Volatile Variable

= A variable is volatile if the value gets changed at any time by some of the
external sources.

Example: volatile int num;

= When we declare a variable as volatile the compiler will examine the value
of the variable each time it is encountered to see if an external factor has
changed the value.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.14 Declaration in C

= A declaration is a C language construct that introduces one or more
identifiers into the program and specifies their meaning and properties.

= Declarations may appear in any scope. Each declaration ends with a
semicolon (just like a statement) and consists of two distinct parts:

specifiers-and-qualifiers declarators-and-initializers ;
= specifiers-and-qualifiers:

= Void

« the name of an arithmetic type

= the name of an atomic type

= @ hame earlier introduced by a typedef declaration

=« struct, union, or enum specifier
= declarators-and-initializers

= Declarators may be accompanied by initializers.
= Example:

int a, *b=NULL;

// "int" is the type specifier, // "a" is a declarator // "*b" is a declarator and
NULL is its initializer

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.15 Expression in C

= An expression followed by a semicolon is a statement.
expression(optional) ;
= Most statements in a typical C program are expression statements, such as
assignments or function calls.

= An expression statement without an expression is called a nu// statement. 1t

is often used to provide an empty body to a for or while loop. It can also be
used to carry a label in the end of a compound statement or before a

declaration:

puts("hello");
char *s;

while (*S++_!= A0}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 1.16 Statement in C

= Statements are fragments of the C program that are executed in sequence.
The body of any function is a compound statement, which, in turn is a
sequence of statements and declarations:

int main(void)
{ start £ :
intn=1,; /
n=n+l; Cat
printf(“n = %d\n", n);
return 0; return statem
} en f
= There are five types of statements:
1) compound statements
2) expression statements
3) selection statements
4) iteration statements

5) jump statements

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

= Operator is a Symbol that tells or instructs the Compiler to perform certain
Mathematical or Logical manipulations (Calculations).

= Operators are used in a program to work on data and variables.

= Operators in general form a part of Mathematical or Logical expression.
Operators are generally classified into different types. They are described
one below another as follows.

1. Arithmetic Operators
2. Relational Operators
5. Logical Operators

4. Assignment Operators
5. Conditional Operators
6. Special Operators

7. Bitwise operators

8. Increment and decrement operators
o. Unary operators

10. Equality operators

11. Size of operators

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

: B

Arithmetic Operators
= Arithmetic operators are used to perform Arithmetic operations.

= They form a part of program. Programs can be written with or without
operators.

= But calculations are performed only using operators.
= Operators act along Operand to produce result.

Operator | Meaning Details

+ Addition Performs addition on integer numbers, floating point
numbers. The variable name which is used is the operand
and the symbol is operator.

Subtraction Subtracts one number from another.

Multiplication | Used to perform multiplication

/ Division It produces the Quotient value as output.
% Modulo It returns the remainder value as output.
s X+Y X -y X*y Xy X%y

= Here X, y are known as operands. The modulus operator is a special
operator in C language that evaluates the remainder of the operands
after division.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

2.

Relational Operator
= Relational Operators are used to compare two same quantities.

= There are six relational operators. They are mentioned one below
another as follows.

Operator | Meaning Operator | Meaning

< is less than = is greater than or equal to
<= isless than orequal to | == is equal to

B is greater than I= is not equal to

= The general form is
(exp1 relational operator exp2)

= Where expl and exp2 are expressions, which may be simple constants,
variables or combination of them. Given below is a list of examples of
relational expressions and evaluated values.

6.5 <= 25 TRUE -65 > O0FALSE 10< 7+ 5 TRUE

= Relational expressions are used in decision making statements of C
language such as if, while and for statements to decide the course of
action of a running program.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

3.

Logical Operators

= Logical Operators are used when we need to check more than one
condition.

= It is used to combine two or more relational expressions.

= Logical Operators are used in decision making. Logical expression yields
value O or 1 i.e.,(Zero or One) .

= 0 indicates that the result of logical expression is TRUE and 1 indicates
that the result of logical expression is FALSE.

Logical Operator | Meaning
&& Logical AND
1 Logical OR

! Logical NOT

1) Logical AND (&&)
= The result of the Logical AND operator will be TRUE If both value is

TRUE. If any one of the value is false then the result will be always
False. The result is similar to basic Binary multiplication.

Example: a > b && x = =10

= The expression is true only if both expressions are true i.e., if a is
greater than b and x is equal to 10.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

3.

Logical Operators

i) LogicalOR(|])

= If any of the expression is true the result is true else false otherwise.
The result is similar to basic Binary addition.

= The logical OR is used to combine 2 expressions or the condition
evaluates to true if any one of the 2 expressions is true.

Example:a<m||a<n

= [t evaluates to true if a is less than either m or n and when a is less than
both m and n.

lif) Logical NOT (!)
= It acts upon single value. If the value is true result will be false and if
the condition is false the result will be true. The logical not operator

takes single expression and evaluates to true if the expression is false
and evaluates to false if the expression is true.

Example: (!a)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

a. Equality Operators
= Equality operator (=) is used together with condition.

= The value of the expression is one or zero. If the expression is true the
result is one, if false result is zero.

Operator | Meaning
e Equal to
I Not equal to
Example :
«X=1andy = 2 then
=« X = =2 is false , X = =1 true , y 1= 3 true

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

s. Assignment Operators

= The Assignment Operator evaluates an expression on the right of the
expression and substitutes it to the value or variable on the left of the
expression.The value of the expression is one or zero. If the expression
is true the result is one, if false result is zero.

= The general form is

identifier = expression
Example: x = a + b;
= Here the value of a + b is evaluated and substituted to the variable x. ‘=’
equal to is used in Assignment operators.

Operator | Meaning Example Example
Simp. Assign Shorthand
+= Assign sum X=x+1 x+=1
-= Assign difference y=y-1 y-=1
= Assign product z=7%(x+y) z=(x+y)
= Assign quotient y=y/(xty) y/=(xt+y)
%= Assign remainder x=x%z x%=2
~= Assignone’s
complement
<<= Assign left shift X=X<<Z X<<=17
Sias Assign right shift
&= Assign bitwise AND y = y&x y&=x
|= Assign bitwise OR
A= Assign bitwise X - OR Z=2Z"y zh=y

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

6. Conditional Operators

= Conditional Operator Ternary operator is also known as “Ternary
operator”. The general form of Conditional Operator is

(expl)?(exp2):(exp3);
= Where expl is the condition which is to be checked and exp2 is the true

value and exp3 is the false value. If the condition in exp1 is false then
statement in exp3 will be automatically executed.

#include<stdio.h> void main()

{ Output:

) Enter the value ofaand b: 125100
Int X,y,z; The biggest value is 125
Cll’SCl’(); Enter the value of aand b: 25 100
printf("Enter the value of a and b :"); The biggest value is 100
scanf(*%d %d”,&x,&y);

z=((x>y)?xy);
printf(" The biggest value is %d",z); getch();

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

1.17 OPERATORS

7.

Special Operators

= Special operators are known as separators or punctuators. Special
operators are Ampersand (&) Braces ({ }) Colon (1)
Ellipsis (...) Asterisk (*) Brackets ([]) Comma(,) Hash
(#) Parenthesis (())Semicolon (;)

. Ampersand (&)

- It is also known as addresss operator. It is specified before the identifier name. i.e.,
variable name. It indicates memory location of the identifier.

i. Asterisk (*)
= Asterisk (*) is also known as indirection operator. It is specified before identifier
name. It indicates creation of pointer variable. It is also a unary operator.

w. Braces ({})

= The opening brace ({) and closing brace (}) specify the start and end of compound
statement in a function. Here semicolon (;) is not necessary. Semicolon (;) is used
only in structure declaration.

v. Brackets

= Brackets [] also referred as array subscript operator. It is used to indicate single and
multi dimensional arrays.

. Example: int x[10]; float [[10][20];

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

7. Special Operators
v.. Colon(:)

- Colon (:) is used in labels. It is used in unconditional control statement i.e., in goto
statement.

= Example: goto d;
v. Comma Operator (,)

- It is used to link expressions together. It is used together with variables to separate
one variable from another. It is used in for loop. It has the lowest precedence among
operators

- Example: for(n=1,m=10;n<=m; n++, m++) int a,b,c;
- sum= (x=5,y=3,x+y);
vi. Ellipsis (...)
= Ellipsis (...) are three continuous dots with no white spaces between them. It is used

in function prototype. It indicates that the function can have any number of
arguments.

2 Example: void fun(char s,int n, float f, ...);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

7. Special Operators
vii. Hash (#)
- Hash (#) is also known as pound sign. it is used to indicate preprocessor
directives.
= Example: #include“stdio.h”

. Parenthesis (())

- Parenthesis (()) is also known as function call operator. It is used to indicate the open
and end of function prototypes, function call, function parameters, Parentheses are
used to group expressions.

x~ Semicolon (;)
- Semicolon (;) is a statement delimiter. It is used to end a C statement.
B Example: g=d+h;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

s. Bitwise Operators

= Bit wise operator is used to manipulate with bits within a word of

memory. Bit wise operator operates only on integer and character but
not on float and double.

Operator | Meaning Operator | Meaning

~ One's Complement | & Bitwise AND
<< Left shift | Bit wise OR
>> Right shift n Bit wise x-or

1. One’s Complement Operator (~)

= One’s Complement makes the bits of operand inverted. Here one becomes
zero and zero becomes one.

Example: x =7i.e., x=00000111
One’s complement of tis 248 (i.e., ~x = 1111 1000 = 248)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

s. Bitwise Operators
. Left shift Operator (<<)
= Left shift operator (<<) shifts each bit of the operand to left. The general

form is
» Variable << number of bit positions
Example: x=7(i.e., 00000111 =7)

y =x<<1lis 14. (i.e.,, 0000 1110 = 14)
. Right shift Operator (>>)
= Right shift operator shifts each bit of the operand to right. The general

form is
m Variable >> number of bit positions
Example: x=7(00000111=7)
22

y=x>>1is3(i.e., 0000011 =3)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

9. Size-Of Operator

= This operator is used to return the size of string or character. It cannot
be used in together with Integers. The syntax is

sizeof(variable-name);
Example: #include<stdio.h> void main()
{
int x; clrscr();
printf("The value of x is %d",sizeof(x)); getch();

¥

Output:
The value ofxis 2

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

10. Increment & Decrement Operators
i) Increment Operators

= It is used to increase the value of the Operand by 1. There are two types of
Increment Operators in C Language. They are pre Increment operator and
post Increment operator.

1)) Pre Increment Operator

= It is used to increase the value of the variable by 1. Here the value of 1 is
added to the variable first along with the given variable value.

Example: ++q -3 pre increment
iii) Post Increment Operators

= It is used to increase the value of the variable by 1. Here the value of 1 is
added to the variable first along with the given variable value.

Example: g++ -> post increment
V) Decrement Operators

= It is used to decrease the value of the Operand by 1. There are two types
of Decrement Operators in C Language. They are pre decrement operator
and post decrement operator.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 1.17 OPERATORS

11. Unary Operators
= Unary operators act on single operand to produce new value.
= It proceeds with operands. Unary minus denotes subtraction.

= Subtraction operators require two operands but unary minus require one
operand.

= The operand used with this operator must be a single variable.

Operator | Meaning
Unary minus

++ Increment by 1
Decrement by 1
sizeof Return the size of operand

Example:

« -/86-0.64 -5e-8 -(a+b) -6*(f+b)-45.878

= When operator is used before variable then it is prefix notation. When
operator is used after variable then it is postfix notation.

PROBLEM SOLVING
" USING C PROGRAMMING

" Bachelor of Computer Application
L SEMESTER - | y

GURU NANAK COLLEGE(Autonomous)

VELACHERY ROAD, CHENNAI - 600042
(Re-Accredited ‘A’ grade by NAAC)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Syllabus — UNIT 2

= Data input output functions
= Simple C programs
= Flow of control
a If
= if- else
= While
= do-while
= for loop
= hested control structures
= Switch
= break and continue
= go to statements
= COmma operator.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

= We know that input, process, output are the three essential features
of computer program.

= The program takes some input data, processes it and gives the
output.
= We have two methods for providing data to the program
= Assigning the data to the variable in a program
= By using the Input/output statements
= In 'C’ [anguage, two types of Input/output statements are available,

and all input and output operation are carried out through function
calls.

= Several functions are available for input/output operations in ‘C’.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

= These functions are collectively known as the standard I/0 library
= Unformatted Input/output Statements
= Formatted Input/output Statements

Input and Qutput Functions |
|
Unformated I/0 Statments ‘ Formated I/0 Statments
Input Output Input Output
getchar() putchar()
eete(] pubel) scanf() printf()
gets() puts()

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

1. Unformatted Input/Output Statements

= These statements are used to Input/output a single/group of characters
form/ to the input/output devices. Here the user cannot specify the type
of data that is going to be input/output.

= The following are the unformatted Input/Output statements available in

\Cf
Input Output
getchar() putchar()
getc() putc()

gets() puts()

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.1 INPUT OUTPUT FUNCTIONS

Single Character Input-getchar() function

= A Single character can be given to the computer using 'C" input library
function getchar()

Syntax char variable=getchar();

Description | char : datatype;

variable : Any valid ‘C’ variable

Example charx; x=getchar();

= The getchar() function is written in standard I/O library.
= It reads a single character from a standard input device.

= This function do not require any arguments, through a pair of empty
parentheses, must follow the statements getchar().

= The first statement declares x as a character type variable.

= The second statement causes a single character to be entered from the
standard input device and then assigned to variable x.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

i. Single Character Output-putchar() function

= The putchar() function is used to display one character at a time on the standard
output device. This function does the reverse operation of the single character
input function as discussed above

Syntax putchar(character variable);

Description| Character variable is the valid ‘C’ variable of the type of char
data type

Example char x; putchar(x);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.1 INPUT OUTPUT FUNCTIONS

i. The getc() function

= This is used to accept a single character from the standard input to a character
variable

Syntax character variable=getc();

Description| Character variable is the valid ‘C’ variable of the type of char
data type

Example char ¢; c=getc();

iv. The putc() function

=« This is used to display a single character in a character variable to standard
output device

Syntax putc(character variable);

Description | Character variable is the valid ‘C’ variable of the type of char data
type

Example char c; put(c);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

V.

The gets() and puts() function

=« The gets() function is used to read the string (string is a group of characters)
from the standard input device (keyboard)

Syntax gets(char type of array variable)

Description Valid ‘c’ variable declared as one dimension char type

Example gets(s);

=« The puts() function is used to display/write the string to the standard
output device.

Syntax puts(char type of array variable)

Description| Valid ‘c’ variable declared as one diamension char type

Example put(s);

= The gets() and puts() function are similar to scanf() and printf() function
but the difference is in the case of scanf() input statement, when there
is a blank space in input text, then it takes the space as an ending of the
string the remaining string are not been taken.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

2.

Formatted Input/Output Statements

= Formatted Input/output refers to input and output, that has been
arranged in a particular format. Example : LAK 3977

= This line contains two parts of data that is arranged in a format, such
data can be read to the format of its appearance, as the first data should
be read into a variable char, the second into int.

= Such operation can be made possible in ‘C" language by using the
formatted Input/output statements. Using these statements, the user
must specify the type of data, that is going to be
accessed(Input/output).

= The following are the formatted Input/output statements

Input Output

scanf() printf()

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

The scanf() function

= Input data can be entered into the computer using the standard input 'C’

library function called scanf().
= This function is used to enter any combination of input.

= The scanf() function is used to read information from the standard input
device(keyboard), scanf() function starts with a string arguments and

may contain additional arguments.
= Any additional argument must be pointer.

Syntax

scanf(“control string”,&var1,&var2,......&varn);

Description

The Control String consists of character groups, Each
character group must begin with a percentage sign ‘%’. The
character group contains percentage sign, followed by
conversion character as specified in table below.

varl,varZ...varn - are the arguments or variables in which
the data is going to be accepted

Example

intn;

scanf(“%d”,&n);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

i. The scanf() function

Control String:

= It is the type of data that the user going to accept via the input
statements, this can be formatted and always preceded with a ‘%" sign.
The below table illustrates code formats (control strings) in Input/Output
statements.

= Each variable name (argument) must be preceeded by an
ampersand(&).

= The (‘&) symbol gives the meaning “ address of” the variable.

= The scanf control string or placeholder consists of % at the beginning
and type indicator at the end.

= Apart from that it can have *, a maximum field width indicator and a
type indicator modified.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

The scanf() function
Control String:

Format]
String Meaning
%c Read single character.
%d Read a decimal integer.
%e Read a floating point value in Exponential form.
%f Read a floating point value.
%g Read a floating point value.
%h Reads a short integer.
%I Read a decimal, hexadecimal or octal integer.
%o Reads an octal integer.
%s Reads an string.
%u Reads an unsigned decimal integer.
%x Reads an Hexadecimal integer. (Unsigned) using lower case a - f
%X Reads a hexadecimal integer (Unsigned) using upper case A - F
%u Reads a unsigned integer.
%U Reads a unsigned long integer.
%p Reads a pointer value
%hx | Reads hex short
%]lo Reads octal long
%ld | Reads long

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

The scanf() function
Rules for writing scanf() function:

1. The control string must be preceded with (%) sign and must be within
quotations, i.e., the address of variable should be passed.

2. If there is an number of input data items, items must be separated by
commas and must be preceded with (&) sign except for string input.

3. The control string and the variables going to input should match with
each other.

4. It must have termination with semicolon.

s. The scanf() reads the data values until the blank space in humeric
input or maximum number of character have been read or an error is
detected.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

i. The printf() function
= Output data or result of an operation can be displayed from the
computer to a standard output device using the library function printf().
= This function used to output any combination of data.

= It is similar to the input function scanf(), except that it display data
rather than input.

Syntax printf(“control string”,varl,var2,......varn);

Control string is any of the following.

a) Format code character

b) Execution character set or Escape sequences

c) Characters/String that will be displayed
Description | yari,var2varn are the arguments or variables from which the data is
going to output. Here the variables need not to be preceded with ‘&’
sign.

Example printf(“Resultis%d",n);
printf(“%f" f);
printf(“%s”,s);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

The printf() function
Rules for writing printf() function:
1. Place appropriate heading in the output.

2. The variables must be separated by commas, and need not be
preceded with ‘&’ sign.

3. The control string and the variables must match in their order.

s, The control string must be in quotations and there we can also use any
other text to print with data.

s. Provide blank space in between the numbers for better readability.
6. Print special messages wherever required in output.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

. Difference between scanf and printf function.

Scanf

printf

Used to accept data

Used to display data

Control string and & operator is used

Control string only used.

It end with semicolon

It end with semicolon

Number of input specified with format

String and enclosed within double quotes.

Number of input specified with format
string and separated by commas.

The Input variables are specified using
Address operator (&) is separated by
commas.

The output variables are specified by
their name and separated by commas.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

i Difference between getchar() and gets()

getchar() gets()
Used to receive a single Used to receive a string with white spaces and
character blanks
Does not require any argument [t require a single argument

ii. Difference between scanf() and gets()

scanf() gets()
Strings with white spaces cannot be Strings with any number of spaces can be
accessed until ENTER key is pressed accessed
Spaces and tabs are not acceptable as a Spaces and tabs are acceptable as a part of
part of the input string input string.

Can receive any number of characters
Only one string can be received at a time.
and integers.

Format string and input variable name is
Format string and address is specified.
specified.

All data types can be accessed Only character data types can be accessed

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 2.1 INPUT OUTPUT FUNCTIONS

v. Difference between puts() and printf()

puts() printf()

It can display only one string | It can display any number of characters, integers or

at a time. strings at a time.

All data types are considered | Each data type is considered separately, depending

as characters. upon the conversion specifications.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

wk. 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

= Decision making structures require that the programmer specify one
or more conditions to be evaluated or tested by the program, along
with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be
executed if the condition is determined to be false.

= C programming language assumes any non-zero and non-null
values as true and if it is either zero or null then it is assumed as
false value.

= C programming language provides following types of decision
making statements. Click the following links to check their detail.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

STATEMENT

if statement

if...else statement

nested if statements

switch statement

nested switch statements

An if statement consists of a Boolean
expression followed by one or more
statements.

An if statement can be followed by
an optional else statement, which
executes when the Boolean expression
is false.

You can use one if or else if statement
inside another if or else if statement(s).

A switch statement allows a variable to
be tested for equality against a list of
values.

You can use one swicth statement
inside another switch statement(s).

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

1.

Simple IF Statement

= An if statement consists of a Boolean expression followed by one or
more statements.

Syntax
= The syntax of an if statement in C programming language is:
if(boolean_expression)

{

[* statement(s) will execute if the boolean expression is true */

by

= If the boolean expression evaluates to true then the block of code inside
the if statement will be executed.

= If boolean expression evaluates to false then the first set of code after
the end of the if statement(after the closing curly brace) will be
executed.

= C programming language assumes any non-zero and non-null values as
true and if it is either zero or null then it is assumed as false value.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

e 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

1. Simple IF Statement

If condition
is false

If condition

is true

conditional code

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

1. Simple IF Statement
Example:

#include <stdio.h>

int main ()

{

/* local variable definition */

inta = 10;

/* check the boolean condition using if statement */
ifla<20)

{

/* if condition is true then print the following */
printf("a is less than 20\n");

}
printf("value of a is : %d\n", a);
return O;

¥
= Output

a is less than 20
valueofais: 10

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Wil 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

2.

IF ELSE Statement

= An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

Syntax
= The syntax of an if...else statement in C programming language is:
if(boolean_expression)

{

[* statement(s) will execute if the boolean expression is true */

by

else

{

[* statement(s) will execute if the boolean expression is false */

by

= If the boolean expression evaluates to true then the if block of code will
be executed otherwise else block of code will be executed.

=« C programming language assumes any non-zero and non-null values as
true and if it is either zero or null then it is assumed as false value.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

2. IF ELSE Statement
If condition

I is true

condition L

is false

else code

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

2. IF ELSE Statement

Example:

#include <stdio.h>

int main ()

{ /* local variable definition */

inta = 100;

/* check the boolean condition */

iflta<20)

{ /* if condition is true then print the following */
printf("a is less than 20\n");

}

else

{ /* if condition is false then print the following */
printf("a is not less than 20\n");

}

printf("value of a is : %d\n", a); return 0;

}
= Output

a is not less than 20
valueofais: 100

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

3.

Nested IF Statement

= An if statement can be followed by an optional else if...else statement,
which is very useful to test various conditions using single if...else if
statement.

= When using if , else if , else statements there are few points to keep in
mind.
= An if can have zero or one else's and it must come after any else if's.
= An if can have zero to many else if's and they must come before the else.

= Once an else if succeeds, none of the remaining else if's or else's will be
tested.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

- 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

3. Nested IF Statement
Syntax

= The syntax of an if...else if...else statement in C programming language
Is:
if(boolean_expression 1)

{

[* Executes when the boolean expression 1 is true */

¥

else if(boolean_expression 2)

{

[* Executes when the boolean expression 2 is true */

¥

else if(boolean_expression 3)

{

[/* Executes when the boolean expression 3 is true */

¥

else

{

[* executes when the none of the above condition is true */

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

™ 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

3. Nested IF Statement

Example:

#include <stdio.h> int main ()

{/* local variable definition */ int a = 100;

[* check the boolean condition */ if(a == 10)

{

[* if condition is true then print the following */ printf("Value of a is 10\n");

>
elseif(a == 20)

{

[* if else if condition is true */ printf("Value of a is 20\n");

r
elseif(a==30)
{

[* if else if condition is true */ printf("Value of a is 30\n");

¥

{

[* if none of the conditions is true */ printf("None of the values is matching\n");

¥

printf("Exact value of a is: %d\n", a);
return 0;

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

W 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

4. Switch Statements

= A switch statement allows a variable to be tested for equality against a
list of values. Each value is called a case, and the variable being
switched on is checked for each switch case.

= Syntax:

switch(expression)

{

case constant-expression :
statement(s);

break; /* optional */

case constant-expression :
statement(s);

break; /* optional */

/* you can have any number of case statements */
default : /* Optional */ statement(s);

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

b 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

4.

Switch Statements

= The following rules apply to a switch statement:
=« The expression used in a switch statement must have an integral or

enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

You can have any number of case statements within a switch. Each case is
followed by the value to be compared to and a colon.

The constant-expression for a case must be the same data type as the variable
in the switch, and it must be a constant or a literal.

When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

When a break statement is reached, the switch terminates, and the flow of
control jumps to the next line following the switch statement.

Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.

A switch statement can have an optional default case, which must appear at
the end of the switch. The default case can be used for performing a task
when none of the cases is true. No break is needed in the default case.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

ke 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

4. Switch Statements

expression

__ S ! code block 1
S il code block 2
case 3 code hliock 3
75
rd
-cle;faul'l code block M

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L | 2.2 FLOW OF CONTROL -DECISION MAKING STATEMENTS

4. Switch Statements

#include <stdio.h> int main ()
{ /* local variable definition */
char grade = 'B';
switch(grade)
{
case 'A':
printf("Excellent!\n");
break;
case 'B':
printf("Good\n"); Output:
i :b"eakF Well done
printf("Well done\n"); Your grade Is C
break;
case'D':
printf("You passed\n");
break;
case 'F':
printf("Better try again\n");
break;
default :
printf("Invalid grade\n");
¥
printf("Your grade is %c\n", grade);
return 0;
>

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

= There may be a situation when you need to execute a block of code
several number of times.

=In general statements are executed sequentially: The first
statement in a function is executed first, followed by the second,
and so on.

= Programming languages provide various control structures that
allow for more complicated execution paths.

= C programming language provides following types of loop to handle
looping requirements.

LOOP TYPE DESCRIPTION
Repeats a statement or group of statements until a given
while loop condition is true. It tests the condition before executing the
loop body.

Execute a sequence of statements multiple times and

for loop abbreviates the code that manages the loop variable.

Like a while statement, except that it tests the condition at
the end of the loop body

You can use one or more loop inside any another while, for
or do..while loop.

do..while loop

nested loops

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

= Loop Control Statements
= Loop control statements change execution from its normal sequence.
When execution leaves a scope, all automatic objects that were created
in that scope are destroyed.
= C supports the following control statements. Click the following links to
check their detail.

CONTROL STATEMENT DESCRIPTION

Terminates the loop or switch statement and transfers
break statement execution to the statement immediately following the loop or
switch.

Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.
Transfers control to the labelled statement. Though it is not
advised to use goto statement in your program.

continue statement

goto statement

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

1. The Infinite Loop
= A loop becomes infinite loop if a condition never becomes false.

= The for loop is traditionally used for this purpose. Since none of the
three expressions that form the for loop are required, you can make
an endless loop by leaving the conditional expression empty.

#include <stdio.h> int main ()

{
for(;;)
{

printf("This loop will run forever.\n");

¥

return O;

)

= When the conditional expression is absent, it is assumed to be true.
You may have an initialization and increment expression, but C
programmers more commonly use the for(;;) construct to signify an
infinite loop.

= NOTE: You can terminate an infinite loop by pressing Ctrl + C keys.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

2. while Loop

= A while loop statement in C programming language repeatedly

executes a target statement as long as a given condition is true.
=« Syntax:

while(condition)

{

statement(s);

}

= Here statement(s) may be a single statement or a block of
statements. The condition may be any expression, and true is any
nonzero value. The loop iterates while the condition is true.

= When the condition becomes false, program control passes to the
line immediately following the loop.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

ke 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

2. While Loop

while{ condition)

1
>

conditional code

' conditicmn

If condition
is trus

condikicomnal
Ccode

&

= Here key point of the while loop is that the loop might not ever run.
When the condition is tested and the result is false, the loop body
will be skipped and the first statement after the while loop will be
executed.

iIf conditiar
i= false

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

™ 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

3. While Loop

Example:
#include <stdio.h> int main ()

{

/* local variable definition */ int a = 10;

/* while loop execution */

while(a < 20)

{

printf("value of a: %d\n", a); a++;
}

return 0;

}

OUTPUT:

value of a: 10
value of a: 11
value of a:; 12
value of a: 13
value of a: 14
value of a; 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

3. do..while loop

= Unlike for and while loops, which test the loop condition at the top
of the loop, the do...while loop in C programming language checks
its condition at the bottom of the loop.

= A do...while loop is similar to a while loop, except that a do...while
loop is guaranteed to execute at least one time.
=« Syntax:

do
{

statement(s);
ywhile(condition);

= Notice that the conditional expression appears at the end of the
loop, so the statement(s) in the loop execute once before the
condition is tested.

= If the condition is true, the flow of control jumps back up to do, and
the statement(s) in the loop execute again. This process repeats
until the given condition becomes false.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

W 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

3. do..while loop

do
{

conditional code ;
+ } while {condition)

conditional

code

If condition
is true

condition

If condition
is false

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

™ 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

3. do..while loop

Example:
#include <stdio.h> int main ()

{

/* local variable definition */ int a = 10;

/* do loop execution */ do

{

printf("value of a: %d\n", a); a=a + 1;
Ywhile(a < 20); return 0;

b

OUTPUT:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

4. for loop

= A for loop is a repetition control structure that allows you to
efficiently write a loop that needs to execute a specific humber of

times.
= Syntax:

for (init; condition; increment)

{

statement(s);

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

4.

for loop

= Here is the flow of control in a for loop:

= The init step is executed first, and only once. This step allows you to
declare and initialize any loop control variables. You are not required to
put a statement here, as long as a semicolon appears.

= Next, the condition is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop does not execute and flow of
control jumps to the next statement just after the for loop.

= After the body of the for loop executes, the flow of control jumps back
up to the increment statement. This statement allows you to update
any loop control variables. This statement can be left blank, as long as a
semicolon appears after the condition.

= The condition is now evaluated again. If it is true, the loop executes and
the process repeats itself (body of loop, then increment step, and then
again condition). After the condition becomes false, the for loop
terminates.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

W 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

4. for loop

for(init; condition; increment)

{

conditional code ;
}

condition

If condition
is true
conditional
coda

L

If condition
is false

- increment

.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

™ 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

4. for loop

Example:

#include <stdio.h> int main ()

{

/* for loop execution */
for(inta=10;a<20;a=a+1)
{

printf("value of a: %d\n", a);

}

return O;

¥

OUTPUT:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

s. Nested loop

= C programming language allows to use one loop inside another
loop. Following section shows few examples to illustrate the
concept.

= A final note on loop nesting is that you can put any type of loop
inside of any other type of loop. For example a for loop can be
inside a while loop or vice versa.

= Syntax:
= The syntax for a nested for loop statement in C is as follows:
for (init; condition; increment)
{
for (init; condition; increment)

{

statement(s);

¥

statement(s);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Wi 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

s. Nested loop

=« The syntax for a nested while loop statement in C programming
language is as follows:
while(condition)
{
while(condition)

{

statement(s);

¥

statement(s);

¥
= The syntax for a nested do...while loop statement in C programming
language is as follows:
do
{
statement(s);
do
{
statement(s);
}while(condition);

ywhile(condition);
Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

- 2.3 FLOW OF CONTROL - BRANCHING AND LOOPING

s. Nested loop

Example:
= Example
= The following program uses a nested for loop to find the prime numbers from 2 to 100:

: 3 OUTPUT:
#include <stdio.h> 2 is prime
int main () 3 is prime
{ 5 is prime
/* local variable definition */ ok i
ot T, 0% 11is prime
inti, j; 13 is prime
for(i=2; i<100; i++) 17 is prime
{ 19 is prime

T 23 is prime
forg=2; j <=(i/)); j++) 29 is prime
if(!(1%:j)) 31is prime
break; // if factor found, not prime 37 is prime
G > (i19) - soide

: Word & - o 43 is prime
printf("%d is prime\n", i); 4755 mne
¥ 53 is prime
return O; 59 is prime
} 61 is prime
67 is prime

71 is prime

73 15 pnime

79 is prime

83 is prime

89 is prime

97 Is prime

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - Loop Control Statements

1. break Statement

= The break statement in C programming language has following two
usage:

= When the break statement is encountered inside a loop, the loop
is immediately terminated and program control resumes at the
next statement following the loop.

= It can be used to terminate a case in the switch statement

=« If you are using nested loops (ie. one loop inside another loop),
the break statement will stop the execution of the innermost loop
and start executing the next line of code after the block.

= Syntax:

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

W 2.3 FLOW OF CONTROL - Loop Control Statements

1. break Statement

conditional

code

If condition
is true

condition

If condition
is false

-

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L | 2.3 FLOW OF CONTROL - Loop Control Statements

1. break Statement

Example:
= Example

#include <stdio.h>

int main ()

{

- . NS— —

/* local variable definition */ inta = 10; OUTPUT:
value of a: 10

/* while loop execution */ while(a < 20) value of a: 11

{ value of a: 12

printf("value of a: %d\n", a); a++; value of a: 13

if(a > 15) value of a: 14

'{ value of a: 15

/* terminate the loop using break statement */

break;

}

}

return 0;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - Loop Control Statements

2. continue Statement

= The continue statement in C programming language works
somewhat like the break statement. Instead of forcing termination,
however, continue forces the next iteration of the loop to take
place, skipping any code in between.

= For the for loop, continue statement causes the conditional test
and increment portions of the loop to execute. For the while and
do...while loops, continue statement causes the program control
passes to the conditional tests.

= Syntax:

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

W 2.3 FLOW OF CONTROL - Loop Control Statements

2. continue Statement

conditional
code

If condition continue
is true

condition

If condition
is false

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L | 2.3 FLOW OF CONTROL - Loop Control Statements

2. continue Statement

Example:

#include <stdio.h>

int main ()

{

/* local variable definition */ inta = 10;
/* do loop execution */ do

{

if{ 8@ == 15)

(OUTPUT:
value of a: 10

/* skip the iteration */ a =a + 1; value of a: 11

continue; value of a: 12

} value of a: 13

value of a: 14
value of a: 16
_ value of a: 17
Ywhile(a < 20); value of a: 18

value of a: 19

printf("value of a: %d\n", a); a++;

return O0;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - Loop Control Statements

3. goto

= A goto statement in C programming language provides an
unconditional jump from the goto to a labeled statement in the
same function.

= NOTE: Use of goto statement is highly discouraged in any
programming language because it makes difficult to trace the
control flow of a program, making the program hard to understand
and hard to modify. Any program that uses a goto can be rewritten
so that it doesn't need the goto.

= Syntax:

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

2.3 FLOW OF CONTROL - Loop Control Statements

3. goto

label 1 statement 1

' 'gu to
label 3

label 2 statement 2

label 3 statement 3 I

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

‘ 2.3 FLOW OF CONTROL - Loop Control Statements

3. goto

Example:

#include <stdio.h> int main ()

4

/* local variable definition */ int a = 10;
/* do loop execution */

LOOP:do

{

if(a == 15)

{ OUTPUT:
value of a: 10

/* skip the iteration */ valueof a: 11

a=a+1; value of a: 12

goto LOOP; value of a: 13

} value of a: 14

value of a: 16

printf("value of a: %d\n", a); valueof a: 17

a++; value of a: 18
twhile(a < 20); value of a: 19
return 0;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

PROBLEM SOLVING
" USING C PROGRAMMING

" Bachelor of Computer Application
L SEMESTER - | y

GURU NANAK COLLEGE(Autonomous)

VELACHERY ROAD, CHENNAI - 600042
(Re-Accredited ‘A’ grade by NAAC)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

| Syllabus — UNIT 3

= Functions:
= Definition
= Proto-types
= Passing arguments
= Recursions.

= Storage Classes -
= Automatic
= External
=« Static
= register variables

= Library functions

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

oL 3.1 FUNCTIONS

= Functions are self-contained blocks of programs that perform some
specific, well-defined task.

= It break large complicated computing tasks into smaller and simpler
ones.

= It helps in maintenance and enhancement of programs.

= It also helps programmers to build their own functions and tying
them to the existing library.

Functions

Pre-defined User— defined
Functions Functions

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

1) Predefined standard library functions
= Standard library functions are also known as built-in functions.

= These functions are already defined in header files (files with .h
extensions are called header files such as stdio.h), so we just call
them whenever there is a need to use them.

= For example, printf() function is defined in <stdio.h> header file so
in order to use the printf() function, we need to include the
<stdio.h> header file in our program using #include <stdio.h>.

= Some of the header files in C are:

Header File Description

<ctype.h> Character testing and
conversion functions

<math.h> Mathematical functions

<stdio.h> Standard [/0O functions

<stdlib.h> Utility functions

<string.h> String handling functions

<time.h> Time manipulation functions

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

1) Predefined standard library functions

= Some of the predefined functions available in ctype.h header file
are:

Function Return Use
Type

isalnum(c) | int Determine if the argument is alphanumeric or
not

isalpha(c) | int Determine if the argument is alphabetic or not

isascii(c) int Determine if the argument is ASCII character
or not

isdigit(c) int Determine if the argument is a decimal digit or
not.

toascii(c) int Convert value of argument to ASCII

tolower(c) | int Convert character to lower case

toupper(c) | int Convert letter to uppercase

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

1) Predefined standard library functions

= Some of the predefined functions available in math.h header file
are:

Function Return Type | Use

ceil(d) double Returns a value rounded up to next higher integer
floor(d) double Returns a value rounded up to next lower integer
cos(d) double Returns the cosine of d

sin(d) double Returns the sine of d

tan(d) double Returns the tangent of d

exp(d) double Raise e to the power of d

fabs(d) double Returns the absolute value of d

pow(dl, d2) | double Returns d1 raised to the power of d2

sqri(d) double Returns the square root of d

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

e 3-1 FUNCTIONS

1) Predefined standard library functions
= Some of the predefined functions in stdlib.h header file are:

Function Return Type Use

abs(i) int Return the absolute value of i

exit(u) void Close all file and buffers, and terminate the
program

rand(void) int Return a random positive integer

calloc(ul, u2) void* Allocate memory for an array having ul
elements, each of length u2 bytes

malloc(u) void* Allocate u bytes of memory

realloc(p,u) void* Allocate u bytes of new memory to the pointer
variable p

free(p) void Free a block of memory whose beginning is

indicated by p

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

1) Predefined standard library functions
= Some of the predefined functions in string.h header file are:

Function Return Type | Use

stremp(s1,82) | int Compare two strings

strepy(sl,s2) char* Copy string s2 to sl

strlen(s) int Return the number of characters in string s
strrev(s) char* Return the reverse of the string s

= Some of the predefined functions available in time.h header file
are:

Function Return type | Use

difftime(11,12) | double Return the difference between 11 ~ 12.

time(p) long int Return the number of seconds elapsed
beyond a designated base time

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

Example:

#include <stdio.h>

#include <math.h>

int main()

{
float num, root;
printf("Enter a number: ");
scanf("%f", &num);

// Computes the square root of num and stores in root.

root = sqrt(num); Output

Enter a number: 12

printf("Square root of %.2f = %.2f", num, root);
Square root of 12.00 = 3.46

return O;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.1 FUNCTIONS

2) User-Defined functions
Example:

#include <stdio.h>

/* function declaration */
void introduction();

int main()

{
/*calling function*/ " Output
introduction(); | _ _
return 0 My name is Chaitanya

¥

How are you?

void introduction()

{

printf("Hi\n");

printf("My name is Chaitanya\n");

printf("How are you?");

/* There is no return statement inside this function, since its
* return type is void

*/

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

3.2 FUNCTIONS

2) User-Defined functions

= The functions that we create in a program are known as user
defined functions or in other words you can say that a function
created by user is known as user defined function.

= return_type: Return type can be of any data type such as int,
double, char, void, short etc. Don’t worry you will understand these
terms better once you go through the examples below.

= function_name: It can be anything, however it is advised to have a
meaningful name for the functions so that it would be easy to
understand the purpose of function just by seeing it's name.

= argument list: Argument list contains variables names along with
their data types. These arguments are kind of inputs for the
function. For example — A function which is used to add two integer
variables, will be having two integer argument.

= Block of code: Set of C statements, which will be executed
whenever a call will be made to the function.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.2 FUNCTIONS PROTOTYPE

.. Function Declaration
Function declaratjon is al lled as functi totype, si th
] Uunci %nmg&e%%argﬁls dalSo C?d?e f%sncl%nc 10N pl"O O ype since ey

provi eprint o ion.
Syntax:
return_type function_name(parameter list);
Example:

int cube(int);

». Function Definition

= [tis the process of specifying and establishing the user defined
function by specifying all of its elements and characteristics.

= A function that does not return any value, but only performs some

operation, is declared to be void.
Syntax:
return_type function_name(parameters declaration)

{

} Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.2 FUNCTIONS PROTOTYPE

3. Function Call

= Function Call invokes the function thatis defined in the program.
A function call is an expression of the form:

Syntax:
function_name (argument-list);

Example:

addValue(index);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.2 FUNCTIONS PROTOTYPE

4. Return Statement

= To return some values to calling function main(), return statement

is required; otherwise, it is optional.
Syntax:

return(expression);

= The expression can be a constant, a variable, a user defined data
structure, a general expression or a function call.

= If the datatype of the expression returned does not match the return
type of the function, it is converted to the return type of the
function.

= If there is no value in a return statement, the calling function will
receive the control, but no value. Such a type of function is known as
a void function.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.2 FUNCTIONS PROTOTYPE

n Example:

i{nt factorial(int n)

int i, result; if(n<0)
return -1; if(n==0)
return 1; for(i=1,result=1;i<=n;i++)
result*=i; return result;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.2 FUNCTIONS PROTOTYPE

4. Function Parameters

= Function parameters are the means of communication between the
calling and the called functions.

= There is no limitation on the number of parameters passed to a
function.
= There are two types of parameters,

= Actual parameters - These are the parameters transferred from the
calling program (main program) to the called program (function)

s Formal parameters- These are the parameters, transferred

into the calling function (main program) from the called program
(function)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.2 FUNCTIONS PROTOTYPE

4. Function Parameters

= Example:
main()

Where,
a,b are the Actual parameters
X,y are the Formal parameter

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.3 PASSING FUNCTION ARGUMENTS

= [If a function is to use arguments, it must declare variables that
accept the values of the arguments. These variables are called the
formal parameters of the function.

= The formal parameters behave like other local variables inside the
function and are created upon entry into the function and destroyed
upon exit.

= While calling a function, there are two ways that arguments can be
passed to a function:

Call Type Description

This method copies the actual value of an argument into the
formal parameter of the function. In this case, changes made
to the parameter inside the function have no effect on the
argument.

Call by value

This method copies the address of an argument into the
formal parameter. Inside the function, the address is used to
access the actual argument used in the call. This means that
changes made to the parameter affect the argument.

Call by reference

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.3 PASSING FUNCTION ARGUMENTS

= Default, C uses call by value to pass arguments. In general, this
means that code within a function cannot alter the arguments used
to call the function and above mentioned example while calling
max() function used the same method.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.3 PASSING FUNCTION ARGUMENTS

i. Call By Value

= In the call by value method of passing arguments to a function
copies the actual value of an argument into the formal parameter of
the function. In this case, changes made to the parameter inside the
function have no effect on the argument.

= By default, C programming language uses call by value method to
pass arguments. In general, this means that code within a function
cannot alter the arguments used to call the function. Consider the
function swap() definition as follows.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.3 PASSING FUNCTION ARGUMENTS

i. Call By Value

/* function definition to swap the values */
void swap(int x, inty)

{

int temp;

temp = x; /* save the value of x */

X= A /* puty into x */

y = temp; /* put temp into y */

return;

by

#include <stdio.h>

/* function declaration */ void swap(int x, int y); int main ()

{
/* local variable definition */ int a = 100;
int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);

/* calling a function to swap the values */ swap(a, b);
printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);

return O;

} Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :100
After swap, value of b :200

wbk. 3.3 PASSING FUNCTION ARGUMENTS

Call By Reference

The call by reference method of passing arguments to a function
copies the address of an argument into the formal parameter.
Inside the function, the address is used to access the actual
argument used in the call. This means that changes made to the
parameter affect the passed argument.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.3 PASSING FUNCTION ARGUMENTS

i. Call By Value

[* function definition to swap the values */
void swap(int *x, int *y)

{

int temp;

temp = *x; [* save the value at address x */
¥y ="ty: [* puty into x */

y = temp; / puttemp intoy */

return;

b

#include <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main ()

{

/* local variable definition */ int a = 100;
int b = 200;

printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and
* &b indicates pointer to b ie. address of variable b. */

swap(&a, &b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
return 0;

h

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :100
After swap, value of b :200

3.4 Recursion

= Recursion is the process of calling the same function itself again
and again until some condition is satisfied. This process is used
for repetitive computation in which each action is satisfied in
terms of a previous result.

#include <stdio.h>
int factorial(unsigned int i)

{
if(i <= 1)

{

return 1;

¥

return i * factorial(i - 1);

}

int main()

{
inti =15;
printf("Factorial of %d is %d\n", i, factorial(i)); return O;

)
OUtout: Factorial of 15 is 2004310016

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 3.5 Scope of Variables

= The part of the program within which variable/constant can be
accessed is called as its scope.

= By default, the scope of a variable is local to the function in
which it is defined.

= Local variables can only be accessed in the function in which
they are defined.

= A variable defined outside any function is called as External
Variable.

= Scope of an external variable will be the whole program, and
hence such variables are referred to as Global variables.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

-

3.6 STORAGE CLASSES

All variables have a datatype, they also have a 'Storage Class'.

The storage class determines the lifetime of the storage
associated with the variable.

If we don't specify the storage class of a variable in its
declaration, the compiler will assume a storage class dependent
on the context in which variable is used.

A variable's storage class gives the following information

Where the variable would be stored.
What will be the default initial value.
What is the scope of the variable.

What is the life of the variable that is, how long would the
variable exist.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 3.6 STORAGE CLASSES

= Following four types of storage classes are provided in C:
Automatic Storage Class

Static Storage Class

External Storage Class

Register Storage Class

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 3.6.1 Automatic Storage Class

= Variables declared inside a block and local to block in which
declared are said to be Automatic variables. These variables can
be accessed by block in which they are declared. Another block
cannot access its value.

= [hese variables created as new variable each time when function
is called and destroyed automatically when the function is exited.

= Compiler treat variable declared inside block as automatic
variable by default. Automatic variables are stored in memory.
All variables declared inside the function is auto by default.

= Auto variables are safe that is, they cannot be accessed directly
by other functions.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 3.6.1 Automatic Storage Class

Example
main()

{
int number;

= We may also use the keyword auto to declare automatic
variables explicitly. main()
{

auto int number;

= One important feature of automatic variables is that their value
cannot be changed accidentally by what happens in some other
function in the program.

= This assures that we may declare and use the same variable
name in different functions in the same program without causing

a n y CO n fu S I 0 nPrlets&(a%te; D%m%&vm /Q.III’I! g!\‘ak College {Autonomous)

3.6.1 Automatic Storage Class

Example: Program to illustrate how automatic variables work
#include<stdio.h>

#include<conio.h>

void function1(void);

void function2(void);

main()

{

int m=2000; Output:

function2(); 10
printf("%d\n”,m);

) 100
void function1(void) 2000
{

int m=10;

printf(*%d\n”,m);

b

void function2(void)

{

int m=100;

function1();

printf(*%d\n”,m);

} Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

~

3.6.2 Static Storage Class

Static variable may be either an internal type or an external type
depending on the place of declaration.

Static variables declared within individual block. They are local to
the block in which declared. It exists until the end of the
program.

Variable can be declared using the keyword static.

Global and Local variable can be declared static. Static variables
are initialized only once when they are compiled in a program.

When the program is closed the function associated with that
program is also excited and whenever it is visited again the same
value exists.

Internal static variable is declared inside a function.

External static variable is declared outside a function. It is made
available to all functions in a C program.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.6.2 Static Storage Class

Example: Program to illustrate how static variables work

#include<stdio.h>
#include<conio.h>
void start(void);
void main()

{

inti;

clrscr();
for(i=1;i<3;i++)
stat();

getch();

)
void stat(void)

{

static int x=0;
X=X+1;
printf(“x=%d\n",x);
by

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Output:

=t 3.6.3 External Storage Class

= Variables that are active throughout the entire program are
called as external variables (global variables).

= External variables are declared outside the function body. This
storage class is created when variable is declared global.

= No memory is reserved for the variable. Variable retain the value
throughout the execution of a program.

= This storage class can be accessed by any function in same or
different program file and change its value.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.6.3 External Storage Class

Example: the external declaration of integer number and float length might appear as
int number; float length=6.2; main()

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.6.3 External Storage Class

Example: Program to illustrate how static variables work

#include<stdio.h>
#include<conio.h>

int fun1(void);

int fun2(void);

int fun3(void);

int x; /*GLOBAL*/
main()

{

x=10; /*GLOBAL */
printf("x=%d\n", x);
printf("x=%d\n", fun1());
printf("x=%d\n", fun2());
printf("x=%d\n", fun3());
b

funi(void)

{

x=x+10; /*GLOBAL*/
)

int fun2(void)

{

int x ; /*LOCAL*/
X=1:

return(x) ;

;
fun3(void)

{
x=x+10; /* GLOBAL*/

;

Output:
x=10
x=20
%=1

x=30

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.6.3 External Storage Class

External Declaration

= In the above program, the main cannot access the variable y as
it has been declared after the main function. This problem can
be solved by declaring the variable with the storage class named
as “extern”.

main()

{
extern int y; [*External declaration*/

funcl() [*External declaration*/

{

extern int y;

by
inty; [*Definition*/

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 3.6.4 Register Storage Class

= Register is a special storage area in a Central Processing Unit
(CPU). There are 8 registers available inside a Computer.

= Register variable can be accessed only by block in which it is
declared. It cannot be accessed by any other function.

= Register variable declared using keyword register. Both Local
variable and formal parameter can be declared as a register.

= Register is used to increase the execution speed. Only integer or
char variables are declared as register in most of the compilers
but ANSI C supports all the data types.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

3.6.4 Register Storage Class

Example: Program to illustrate how Register variables work

#include<stdio.h>
#include<conio.h>
void main()

{

register int x;
clrscr();
for(x=1;x<=10;x++)
printf(*%d” x);
getch();

b

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

PROBLEM SOLVING
" USING C PROGRAMMING

" Bachelor of Computer Application
L SEMESTER - | y

GURU NANAK COLLEGE(Autonomous)

VELACHERY ROAD, CHENNAI - 600042
(Re-Accredited ‘A’ grade by NAAC)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Syllabus — UNIT 4

= Arrays
= Defining and Processing
= Passing arrays to functions
= Multi-dimension arrays
= Arrays and String
= Structures
= User defined data types
= Unions

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

| 4.1 Arrays

1. Defining And Processing Arrays

= Many applications require the processing of multiple data items that
have common characteristics. In such a situation it is convenient to
place such data item in an Array

= An array is a collection of similar data items that are stored under a
common name. A value in an array is identified by index or
subscript enclosed in square brackets with array name.

= The individual data items can be integers, floating point numbers,
and characters and so on, but they must be the same type and
same storage class.

= Each array element is referred by specifying the array name with
subscripts each subscripts enclosed in square brackets and each
subscript must be a hon-negative integer.

int A [5] =5
A[O],A[1],A[2],A[3],Al4]

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 4.1 Arrays

1. Defining And Processing Arrays
= Thus 'n’ elements array 'A’ and the elements are
A[0],A[1],A[2].....A[N-1]

= The value of each subscript can be expressed as an integer constant
or an integer variable or an integer expression.

= The arrays can be used to represent not only simple list of value but
also task of data items in two and three or more dimensions.
= Arrays can be classified into
= One-Dimensional arrays
= Two-Dimensional arrays
= Multi-Dimensional arrays

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

~

4.1 Arrays

Array Declaration

= Arrays are declared in the same manner as an ordinary variables
except that each array name must have the size of the array i.e,,
number of elements accommodate in that array.

= Like variables, the array must be declared before they are used.
Syntax :

data_type array_variable [Size or Subscript of the array];
eg: char a[20];

= data type — Specifies the type of the data that will be contained in
the array

= array_variable- Specifies the name of the array

= Size or Subscript — Specifies the maximum number of elements
that the array can hold

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

oL 4.1 Arrays

= The subscript of an array can be integer constant, integer variable
or an expression that yields an integer value

Example: int a[5];
int n=20;
int a[n];
int a[x+y+2z];
= Where, 'a’ is the name of the array with 5 subscripts of integer

data types and the computer reserves five storage location as
shown below,

al0]

a[1]
al2]

a[3]
a[4]

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

oL 4.1 Arrays

Processing an Array
= The entire array cannot be accessed with single operation.

= S0, the array elements must be accessed on an element-by element
basis.

= This can be usually done with the help of the loop, when each pass
of the loop is used to access an array element, thus the number of
passes through the loop will therefore equal the number of array
elements to be processed.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 4.1 Arrays

= The entire array cannot be accessed with single operation.

= 50, the array elements must be accessed on an element-by element
basis.

= This can be usually done with the help of the loop, when each pass
of the loop is used to access an array element, thus the number of
passes through the loop will therefore equal the number of array
elements to be processed.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.2 Array Initialization

= The values can be initialized to an array, when they are declared
like ordinary variable, otherwise they hold garbage values.

= The array can be initialized in the following two ways:
= At compile time
= At run time

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.2 Array Initialization

i. At Compile Time

Syntax:

= data_type array name [size]={List of values}; Where,
= The list of values must be separated by commas.
Example:

= int marks[3]={70,50,86};

= This statement declares the variable marks as an array of 3
elements and will be assigned to values specified in list as shown
below

70

50 marks|[1]
86 marks|2]

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.2 Array Initialization

i. At Compile Time

//Program to read marks using array initialization
#include<stdio.h>

void main()

{

int studmark[5]={99,97,87,89,92};
int i;

printf("mark of the student is:\n");
for(i=0;i<=4;++i)

{

printf("%d\t",studmark][i]);

)

getch();

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.2 Array Initialization

i. At RunTime
= The array can be explicitly initialized at run time

Example :

int n[2];

scanf("%d%d",&n[0],&n[1]);

= Like, the array can also be initialized by reading data items from the
Input

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.2 Array Initialization

i. At RunTime
//Input n numbers and display n humbers

#include<stdio.h>

void main()

{int a[100];

intin;

printf("number of elements in array\n");
scanf("%d",&n);

printf("enter the elements\n");
for(i=0;i<n;++i)

{

scanf("%d",&a[i]);

}

printf("elements in array\n");
for(i=0;i<=n-1;++i)

{

printf("%d\t",a[i]);

}

getch();

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.3 One-Dimensional Array

= The collection of data items can be stored under a one variable
name using only one subscript, such a variable is the one-
dimensional array.

//Add ten humbers and find sum and average
#include<stdio.h>

void main()

{

int i,num[10],sum=0;

float avg=0.0;

printf("enter ten numbers:\n");
for(i=0;i<10;i++)

{

scanf("%d",&num[i]);

sum+=numli];

b

avg=(float)sum/10.0;

printf("\n sum of 10 number is:%?7.2d",sum);
printf("\n average of 10 number is :%5.3f",avq);
getch();

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.4 Two-Dimensional Array

= Two dimensional arrays are used in situation where a table of
values need to be stored in an array.

= These can be defined in the same fashion as in one dimensional
arrays, except a separate pair of square brackets are required for
each subscript.

= Two pairs of square brackets required for to dimensional array and
three pairs required for three dimensional arrays and so on.

Syntax:
data_type array_name[row size] [column size];

= data_type - specifies the type of the data that will be contained in
the array.

= array_name - specifies the name of the array
= [row size] specifies the size of the row
= [column size] specifies the size of the column

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.4 Two-Dimensional Array

Example:
int a[3][3];
= Two dimensional arrays are stored in a row-column matrix, where
the left index indicates the row the right indicates the column.

= Where 'a' is the array hame and it reserves 3 row and 3 columns of
memory as shown below

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.4 Two-Dimensional Array

FAF* MATRIX ADDITION ****/

e <stdio.h>
int main() { // addir}g two_mah'ices_
. . for(i=0;i<r; ++i)
int r, ¢, a[100][100], b[100][100], sum[100][100], i, j; for(j=0;j < ¢ ++j){
printf("Enter the number of rows (between 1 and 100): "); sum[il[j] = a[il[j]1 + blil[j1;
scanf("%d", &r); $
printf("Enter the number of columns (between 1 and 100): "); o
scanf("%d", &c); // _prm:clang the result R
printf("\nSum of two matrices: \n");
for(i=0;i<r; ++i)
printf("\nEnter elements of 1st matrix:\n"); for(J=0;]<c ++){
for (i=0;i<r; ++i) printf("%d ", sum[i][j]);
forG=0;j<c ++]){ IF(] == g=l)q
printf("Enter element a%d%d: ", i + 1, j + 1);) printf("\n\n");
scanf("%d", &a[i][jl); }
by
printf("Enter elements of 2nd matrix:\n"); return 0;
for i=0;i<r; ++i) h

for(j=0;j<c ++){
printf("Enter element a%d%d: ", i + 1, j + 1);
scanf("%d", &bl[i][jl);

by

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.4 Two-Dimensional Array

Initializing an Two-Dimensional Array.

= A Two-Dimensional Array can be also initialized. For that the array
values are specified within a Compound statement. (i.e.,) { and }.

General form :-
Storage-class data-type array-name[r][c] = { valuel, value2, , value n};

= Here storage class may be static or extern by default. Storage-class
is optional.

= Data-type refers to a valid C data type.
= Array-name refers to a valid array name.

= Here r stands for number of rows and c stands for number of
columns.

= Each values in an array are separated by commas and terminated
by semicolon.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.4 Two-Dimensional Array

#include<stdio.h>

void main()

{

inti,j;

float a[4][2]={{12.3,34,5},{23.4,45.6},{34.5,56.7},{45.6,67.8}};
printf(“Element value Address”);

for(i=0;i<4;i++)

{
for(j=0;j<2;j++)
{
printf("\n a[%d] [%d] %0.2f %p”,i,j,a[il[j],&a[i][i]);
b
}
getch();
)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.5 Multi-Dimensional Array

= Multi-dimensional Array consists of (or) requires more than two
square brackets and it may contain any number of values specified
within square brackets. It may be three, four, five, six and so on.

= A Multi dimensional Array in general takes the following form.

General form :-
Storage-class data-type array-name[s1][s2] [sn];

= Here storage class may be static or extern by default. Here Storage-
class is optional. Data-type refers to a valid C data type. Array-
name refers to a valid array name. s1,52,s3, are sub scripts.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t Array Example

ort number in ascending order*/
de<stdio.h> for(i=0;i<5;i++)

void main() printf("%d\t",;num[i]);

£ for(i=0;i<4;i++) for(j=i+1;j<5;j++)

int i,j,k,num[5],temp; { _ _

clrscr(); if num[i]>numj]

printf("Enter five numbers:\n"); { _ _ _ _
for(i=0;i<5;i++) temp=num(i]; num[i]=num[j]; num[j]=temp;

{ by

scanf("%d”, &num[i]); printf("\n the sorted numbers are:\n"),
y ' ' for(i=0;i<5;i++)

printf("%d\t”,num[i]); getch();

printf("\n THE ORIGINAL LIST IS:\n"); y

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

Features of Array

Features of Arrays :

= An array is a derived data type. It is used to represent a collection
of elements of the same data type.

= The elements can be accessed with base address (index) and the
subscripts define the position of the element.

= In array the elements are stored in continuous memory location.
The starting memory location is represented by the array name and
it is known as the base address of the array.

= It is easier to refer the array elements by simply incrementing the
value of the subscript.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.6 Arrays and Strings

String Manipulation

= In 'C' language the group of character, digits and symbols enclosed
within quotation marks are called as string otherwise string are
array of characters. Null character('/0') is used to mark the end of
the string.

Example: char name[]={"'S','T','R,'T','N','G','/0"}

= Each character is stored in one byte of memory and successive
characters of the string are stored in successive byte

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.6 Arrays and Strings

Reading and Writing String

= The '%s' control string can be used in scanf() statement to read a
string from the terminal and the same may be used to write string
to the terminal in printf() statement.

Example: char name[10];
scanf("%s",name);
printf("%s",name);

** there is no address (&) operator used in scanf() statement

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

Character Array

= Character Array is specified within single quotes and ended with
semicolon. It is used to define a single character for the array.

/7 Input 10 characters and print 10 characters
#include<stdio.h>

void main()

{

char character[10];

int cnt;

clrscr();

[*read character one by one*/
printf(“enter 10 character\n");
for(cnt=0;cnt<10;cnt++)
character[cnt]=getchar();

[*display character one by one*/
printf(“\nentered characters are :\n");
for(cnt=0;cnt<10;cnt++)
putchar(character[cnt]);

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

Strings Standard Function
= The commonly used string manipulation functions are follows

1. The strlen() function

= This function is used to count and return the number of character present in a string
Syntax: var =strlen(string);
= Where, var - Is the integer variable, which accepts the length of the string

= string - Is the string constant or string variable in which the length is going to be
found.

Example: Program using strlen() function
#include<stdio.h>

#include<string.h>

main()

{

char name[100]; int length;

printf("Enter the string”);

gets(name);

length=strlen(name);

printf("\nNumber of characters in the string is=%d" length);

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

2. The strcpy() function

= This function is used to copy the contents of one string to another and it almost
works like string assignment operator.

Syntax: strcpy(stringl,string2);
= stringl is the destination string string2 is the source string
= i.e., The contents of string2 is assigned to the contents of stringl. where string2 may
be character array variable or string constant.

Example: Program using strcpy() function
#include<stdio.h>
#include<string.h>

main()

{

char source = “Welcome”;
char target[10];

strcpy(target,source);

printf(“\n Source string is %s",source);
printf(“\n Target string is %s" target);
b

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

3. The strcat() function

= The strcat() function is used to concatenate or combine, two strings together and
forms a new concatenated string.

Syntax : strcat(stringl,string2);
= Where, stringl and string2 are character type arrays or string constants. When the

above strcat function is executed, string2 is combined with stringl and it removes
the null character(/0) of stringl and places string2.

Example: Program using strcat() function
#include<stdio.h>

#include<string.h>

main()

{

char source[10]="Ramesh”;

char target[10]="Babu”;
strcat(source,target);

printf(™\n Source string is %s”,source);
printf(\n Target string is %s” target);

}

OUTPUT

Source string is RameshBabu

Target string is Babu

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

4. The strcmp() function

= This is a function which compares two strings to find out whether they are same or
different. The two strings are compared, character by character until the end of one
of the string is reached. If the two strings are identical strcmp() returns a value zero.

= If they are not equal, it returns the numeric difference between the first non-
matching characters

Syntax: strcmp(stringl,string2);
= stringl and string2 are character type arrays or string constants
Example: Program using strcmp() function

#include<stdio.h>
#indude<string.h>

main()

{

char s1[20],52[20];

int x;

printf(“Enter the strings”);
scanf("%s%s",s1,52);
x=strcmp(sl,s2);

if(x!=0)

{

printf(*\nStrings are not equal\n"); else
printf(*\nStrings are equal”);
by

-

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.6 Arrays and Strings

5. The strrev() function

= The strrev function is used to reverse a string. This function takes only one argument
and return one argument. The general form of strrev() function is

Syntax: strrev(string);
String are characters type arrays of\r string constants

Example: Program using strrev() function
#include<stdio.h>

#include<string.h>

main()

{

char a[30];

printf("Enter the string:”);

gets(a);

printf("The string reversed is : %s", strrev(a));

}

OUTPUT
= Enter the string : array
= The string reversed is : yarra

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.6 Arrays and Strings

STRING LIBRARY FUNCTIONS
= The header file related to string functions is <string.h>

FUNCTIONS MEANING

stremp(si1,s2) Compares two strings. Return negative value if s1<s2. 0 if s1 and s2 are identical. Return positive
value if s1>s2.

strcpy(s1,s2) Copies a string s2 to another string si.

strcat(s1,s2) Combines the string sl at the end of string s2.

strchr(s1,c) Finds first occurrence of a given character in a string. Compare characters of string s1 with
character starting from head of string s1.

strlen(s) Find length of a string s.

striwr(s) Converts string s to lowercase

strrev(s) Reverse the string s.

strupr(s) Converts the string s to uppercase

strdup(s) Duplicate string s.

strncpy(s1,s2,n) Copies portion of string s2 to string s1 upto position n.

strncmp(s1,s2,n) Compares portion of string s2 to string s1 upto position n.

strrchr() Find last occurrence of a given character in a string.

strstr() Find first occurrence of a given string in another string.

strcempi() Compares two strings without regard to case ("i” denotes that this function ignores case).

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.7 Structures

= C supports a constructed data type known as structures, a
mechanism for packing data of different types.

= "A structure is a convenient tool for handling a group of logically
related data items”.

= Structure is a type of data structure in which each individual
elements differ in type.

= 1he elements of a structure are called members.

= The structure elements contain integer, floating point
numbers, character arrays, pointers as their members.

= Structure act as a tool for handling logically related data items.

« Fields of structure are called structure elements or members.
Each member may be of different type.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

= Syntax:
struct structure_name

{

data_type memberl;
data_type member2;

data_type memebern;
} [one or more structure variables];

= Example:

struct Books

{
char title[50];
char author[50];
char subject[100];
int book_id;

} book;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4./ Structures

= Structure Initialization

1. When we declare a structure, memory is not allocated for un-
initialized variable.

2. We can initialize structure variable in different ways.
i. Declare and Initialize

struct student

{
char name[20];
int roll;
float marks;

ystdl = { "Pritesh",67,78.3 };

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

i. Declaring and Initializing Multiple Variables

struct student

{
char name[20];
int roll;
float marks;

by
stdl = {"Pritesh",67,78.3};

std2 = {"Don",62,71.3};
i. Initializing Single Member

struct student

{
int mark1;
int mark2;
int mark3;

} sub1={67};

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

iv. Initializing Inside Main
struct student

{

int mark1; int mark2; int mark3;

b
void main()

{
struct student s1 = {89,54,65};

iv. Initializing Single Member

struct student

{
int mark1;
int mark2;
int mark3;

} sub1={67};

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 4.7 Structures

= Uses of Structures
= Used to store huge data. Structures act as a database.
= Used to send data to the printer.
= Structures can interact with keyboard and mouse to store the data.
= Used in drawing and floppy formatting.
= Used to clear output screen contents.
= Used to check computer’s memory size etc.

= Accessing structure members:
= Members in a structure are accessed using the Period Operator *.".
= Period Operator establishes a link between member and variable name.

= Structure members are processed by using a variable name with period *." and
member name.

= Period Operator is also known as member operator or dot operator.
= The syntax for accessing structure members is
structure_variable.member_name

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

= Rules of Initializing Structures

1.

2

We cannot initialize individual members inside the structure template.

The order of values enclosed in braces must match the order of members in the
structure definition.

It is permitted to have a partial initialization. We can initialize only the first few
members and leave the remaining bank. The uninitialized members should be only
at the end of the list.

The uninitialized members will be assigned default values as follows
= Zero for integer and floating point number.
= /0’ for characters and strings.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

Structure Operations

= The period operator *.” has high precedence over unary operator,
arithmetic operator, relational operator, logical operator and
assignment operator.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

1. Example Program using structure:
#include <stdio.h>
#include <string.h>

struct Books

{

char title[50];

char author[50]; char subject[100]; int book_id;

b
int main() {

struct Books Book1l; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial®);
Book1.book_id = 6495407;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7 Structures

Example Program using structure:

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Bookl.title);

printf("Book 1 author : %s\n", Book1l.author);
printf("Book 1 subject : %s\n", Bookl.subject);
printf("Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);
printf("Book 2 subject : %s\n", Book2.subject);
printf("Book 2 book_id : %d\n", Book2.book_id);

return O;

}

Output:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial
Book 1 book id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Al

Book 2 subject : Telecom Billing Tutorial
Book 2 book _id : 6495700

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.1 ARRAYS AND STRUCTURES

2. Example Program using ARRAYS AND STRUCTURES:

= C Structure is collection of different datatypes (variables) which are grouped together.
= Whereas, array of structures is nothing but collection of structures.

= This is also called as structure array in C.

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[30]; float percentage;

-

int main()

{

int i;

struct student record[2];

// 1st student's record
record[0].id=1;
strcpy(record[0].name, "Raju™);
record[0].percentage = 86.5;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.1 ARRAYS AND STRUCTURES

Example Program using ARRAYS AND STRUCTURES:

// 2nd student's record
record[1].id=2;
strcpy(record[1].name, "Surendren");

; Output:
record[1].percentage = 90.5; R;: 0'::;5 TR ¥
Idis: 1
// 3rd student's record Name is: Raju
: Percentage is: 86.500000 Records of
strcpy(record[2].name, "Thiyagu"); Idis: 2

Name is: Surendren
Percentage is: 90.500000
Records of STUDENT : 3

record[2].percentage = 81.5;

//Printing Student's record Idis: 3 1
for(i=0; i<3; i++) Name is: Thiyagu

o ’ Percentage is: 81.500000
{

printf(" Records of STUDENT : %d n", i+1);
printf(" Id is: %d n", record[i].id);

printf(" Name is: %s n", record[i].name);

printf(" Percentage is: %fnn",record[i].percentage);

¥

return O;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.2 NESTED STRUCTURES

= Nested structure in C is nothing but structure within structure.

= One structure can be declared inside other structure as we declare structure
members inside a structure.

= The structure variables can be a normal structure variable or a pointer variable to

access the data.
#include <stdio.h>
#include <string.h>

struct student_college_detail
{

int college_id;

char college_name[50];

Y

struct student_detail

{

intid;

char name[20];

float percentage;

/[structure within structure

struct student_college_detail clg_data;
¥stu_data;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.2 NESTED STRUCTURES

int main()

{

struct student_detail stu_data = {1, "Raju", 90.5, 71145,"Anna University"};
printf(" Id is: %d n", stu_data.id);

printf(" Name is: %s n", stu_data.name);

printf(" Percentage is: %f nn", stu_data.percentage);

printf(" College Id is: %d n", stu_data.clg_data.college_id);

printf(" College Name is: %s n", stu_data.clg_data.college_name);

return O;

¥
OUTPUT
Idis: 1

Name is: Raju

Percentage is: 90.500000
College Id is: 71145

College Name is: Anna University

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.3 PASSING STRUCTURES TO FUNCTIONS

= A structure can be passed to any function from main function or from any sub
function.

= Structure definition will be available within the function only.

= [t won't be available to other functions unless it is passed to those functions by value
or by address(reference).

= Else, we have to declare structure variable as global variable. That means, structure
variable should be declared outside the main function. So, this structure will be
visible to all the functions in a C program.

= Passing structure to function can be done in three ways
« Passing structure to a function by value
« Passing structure to a function by address(reference)
= No need to pass a structure — Declare structure variable as global

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.3 PASSING STRUCTURES TO FUNCTIONS

= Passing structure to a function by value

= In this program, the whole structure is passed to another function by value. It
means the whole structure is passed to another function with all members and
their values. So, this structure can be accessed from called function.

#include <stdio.h>
#include <string.h>
struct student

{

int id;

char name[20];
float percentage;

void func(struct student record);

int main()

{

struct student record;
record.id=1;
strcpy(record.name, "Raju");
record.percentage = 86.5;
func(record);

return O;

}

void func(struct student record)

{

printf(" Id is: %d n", record.id);

printf(" Name is: %s n", record.name);

printf(" Percentage is: %f n", record.percentage);

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.3 PASSING STRUCTURES TO FUNCTIONS

= Passing structure to a function by address

= In this program, the whole structure is passed to another function by address. It means
only the address of the structure is passed to another function. The whole structure is not
passed to another function with all members and their values. So, this structure can be
accessed from called function by its address.

#include <stdio.h>
#include <string.h>
struct student

{

int id;

char name[20];
float percentage;

h

void func(struct student *record);

int main()

{

struct student record;

record.id=1;
strcpy(record.name, "Raju");
record.percentage = 86.5;
func(&record);

return 0;

}

void func(struct student *record)

{

printf(" Id is: %d n", record->id);

printf(" Name is: %s n", record->name);

printf(" Percentage is: %f n", record->percentage);

¥

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.7.3 PASSING STRUCTURES TO FUNCTIONS

= To declare structure variable as global

« Structure variables also can be declared as global variables as we declare other variables
in C. So, When a structure variable is declared as global, then it is visible to all the
functions in a program. In this scenario, we don't need to pass the structure to any
function separately.

#include <stdio.h> void structure_demo()

#include <string.h> {
printf(" Id is: %d n", record.id);
struct student printf(" Name is: %s n", record.name);
{ printf(" Percentage is: %f n", record.percentage);
intid; ;

char name[20];

float percentage;

5

struct student record; // Global declaration of structure
void structure_demo();

int main()

{

record.id=1; strcpy(record.name, "Raju™);
record.percentage = 86.5;

structure_demo(); return 0;

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

L 4.8 UNION

= A union is a special data type available in C that allows to store
different data types in the same memory location. Unions provide
an efficient way of using the same memory location for multiple-
purpose.

= Concept/Advantages of Union

= The compiler allocates sufficient space to hold the largest
data item in the union and not for all members.

= They are used to conserve memory.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.8 UNION

= Defining Union
union [union tag]

{

member definition;
member definition;

member definition;
} [one or more union variables];

= Example

union Data
{

int i;

float f;

char str[20];
} data;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

4.8 UNION

= Example Program to Find Total Memory Occupied by Union
#include <stdio.h>
#include <string.h>

union Data

{
int i; float f;
char str[20];

-

int main()

{

union Data data;
printf("Memory size occupied by data : %d\n", sizeof(data));
return O;

¥
OUTPUT:

Memory size occupied by data : 20

= In the above example, Data type will occupy 20 bytes of memory
space because this is the maximum space which can be occupied by
a character string.

esented by: RamyaDevi R /Guru Nanak College (Autonomous)

uy 48 UNION

= Accessing Union Members
= To access any member of a union, we use the member access operator

().
= The member access operator is coded as a period between the union
variable name and the union member that we wish to access.

= The keyword union is used to define variables of union type.

= The following example shows how to use unions in a program —
#include <stdio.h>

#include <string.h>

union Data

{

int i; float f;

char str[20];

h

int main()

{

union Data data;
data.i = 10;
printf("data.i : %d\n", data.i);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 4.8 UNION

data.f = 220.5;

printf("data.f : %f\n", data.f);
strcpy(data.str, "C Programming");
printf("data.str : %s\n", data.str);

return O;

}

OUTPUT

data.i : 10

data.f : 220.500000
data.str : C Programming

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

- 4.8 UNION

= Difference between Union and Structure

= A union allocates the memory equal to the maximum memory required
by the member of the union. However, a structure allocates the
memory equal to the total memory required by the members.

= In a union, one block is used by all the member of the union.
However, in case of a structure, each member has its own memory
space.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

PROBLEM SOLVING
" USING C PROGRAMMING

" Bachelor of Computer Application
L SEMESTER - | y

GURU NANAK COLLEGE(Autonomous)

VELACHERY ROAD, CHENNAI - 600042
(Re-Accredited ‘A’ grade by NAAC)

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

= Pointers
= Declarations
= Passing pointers to Functions
= Operation in Pointers
= Pointer and Arrays
= Arrays of Pointers
= Files :
= Creating ,
= Processing,
= Opening and Closing a data file.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.1 Pointers

= A pointer is a variable which contains the address in memory of

another variable. We can have a pointer to any variable type.
= The unary or monadic operator & gives the “address of a variable”.
= The indirection or dereference operator * gives the

= "contents of an object pointed to by a pointer”.

General form: datatype *variablename;

Example: int *ptr;

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.1 Pointers

= Uses of a Pointer
= Allows to keep track of address of memory locations.
= Allows to easily manipulate data in different memory locations.
= Allows dynamic allocation of memory

= Allows accessing array elements, passing arrays and strings to
functions, creating data structures such as linked lists, trees,

graphs and so on.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 5.1 Pointers

Example of a Pointer
= Consider the following declaration
Int num=>5;

= The compiler will automatically assign memory for this
data item.

= The data item can be accessed if we know the
location(that is the address) of the first memory cell.

nuUm * Location name

) |— Value at location

. Location number
or Address

4764

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.1 Pointers

= Example Program for Usage of Pointers

#include <stdio.h>

int main ()

{

int var = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/
printf("Address of var variable: %x\n", &var);
/* address stored in pointer variable */
printf("Address stored in ip variable: %x\n”, ip);
/* access the value using the pointer */
printf(“Value of *ip variable: %d\n”, *ip);

return O;
by
OUTPUT
Address of var variable : bffd8b3c
Address stored in ip variable : bffd8b3c

Value of *ip variable : 20

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.1 Pointers

= NULL Pointer

= It is always a good practice to assign a NULL value to a pointer variable in
case we do not have an exact address to be assigned.

= This is done at the time of variable declaration.
= A pointer that is assigned NULL is called a null pointer.

= The NULL pointer is a constant with a value of zero defined in several
standard libraries. Consider the following program —

#include <stdio.h>
int main ()

{

int *ptr = NULL;

printf("The value of ptr is : %x\n", ptr);
return O;

¥

OUTPUT
The value of ptris : 0

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.2 Pointers and Function

= NULL Pointer

= A function like a variable has a type and an address location in the
memory. It is therefore possible to declare a pointer to a function, which
can be used as an argument in another function.

= Pointer to a function contains the address of function in memory. Pointers
are passed to a function as arguments.

#include <stdio.h>

/* function declaration */

double getAverage(int *arr, int size);
int main ()

{

/* an int array with 5 elements */

int balance[5] = {1000, 2, 3, 17, 50};
double avg;

/* pass pointer to the array as an argument */
avg = getAverage(balance, 5) ;

/* output the returned value */
printf("Average value is: %f\n”, avg);
return O;

}

double getAverage(int *arr, int size)

{

inti, sum = 0;

double avg;

for (i = 0; i < size; ++i)
{

sum += arr[i];

}

avg = (double)sum / size;
return avg;

}

OUTPUT
Average value is: 214.40000

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 5.3 Operation in Pointers

POINTERS AND STRINGS

= Strings are treated like character arrays and therefore, they are
declared and initialized as follows.
char str[5]="good";

= The compiler automatically inserts the null character’\0’ at the
end of the string. C supports an alternative method to create strings
using pointer variables of type char. For example

char *str="good";

= This creates a string for the literal and then stores its address in the
pointer variable str. The pointer str now points to the first character
of the string "good” as:

g 0 0 d \0

str

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 5.3 Operation in Pointers

POINTERS AND STRINGS

= We can also us the run-time assignment for giving values to a string
pointer. For example

char * stringl;
stringl="good";
= Note that the assignment
stringl="good";
= iS not a string copy, because the variable string1
= IS a pointer, not a string.

= C does not support copying one string to another through
assignment operation.

= We can print the content of the string string1 using either printf
or puts function as follows

printf(" %s", stringl);
puts(stringl);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.3 Operation in Pointers

= Example Program to determine the length of a character string using pointers
#include<stdio.h>

#include<conio.h>

void main()

{

char *name; OUTPUT
int length; INDIA

char *cptr=name;

name="India"”;

printf(*%s\n”,name);

while(*cptr '="0")

{

printf("%c is stored at address %u\n”, *cptr, cptr);
cptr++;

by

length =cptr-name;

printf(“\n Length of the string=%d\n”, length);
h

I is stored at address
N is stored at address :
D is stored at address :
I is stored at address
A is stored at address :

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

24
25
26
27
28

=t 5.4 POINTERS AND ARRAYS

= Array is a collection of similar data type elements stored under
common name. When we declare an array the consecutive memory
location are located to the array of elements.

= The elements of an array can be efficiently accessed by using
pointers.

= Array elements are always stored in consecutive memory location
according to the size of the array.

= The size of the data type with the pointer variables refers to,
depends on the data type pointed by the pointer.

= A pointer when incremented, always points to a location after
skipped the number of bytes required for the data type pointed to
by it.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=k 5.4 POINTERS AND ARRAYS

#include <stdio.h>

int main ()

{

/* an array with 5 elements */

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

Ky =

clcits.tile P OUTPUT

In l,b | Array values using pointer
p = balance;

*(p + 0) : 1000.000000

*(p + 1) : 2.000000

*(p + 2) : 3.400000

*(p + 3) : 17.000000

U ‘ . _ *(p + 4) : 50.000000

pRINCD-+ Sad)e SO0, T *ip+ 1y, Array values using balance as address

’ : _ *(balance + 0) : 1000.000000
printf(“Array values using balance as address\n"); ¥(balance + 1) : 2.000000

for (i =0;i<5;i++) *(balance + 2) : 3.400000

/* output each array element's value */
printf("Array values using pointer\n");
for(i=0;i<5;i++)

{ Nt (bal + %d) : %An" i *(bal Ty A *(balance + 3) : 17.000000
;)I'In ("*(balance od) : %f\n”, i, *(balance + i)); ¥(balance + 4) : 50.000000
return 0;

y

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

| 5.5 FILES

-"A file is a collection of related information that is
permanently stored on the disk and allows us to access and
alter the information whenever necessary.”

= Group of related record form a FILE. FILE is a place on the disk
where group of related data is stored. DATA FILE is used to store
information in floppy disk, hard disk. Field is a data item used to
store a single unit. Group of related field constitute a RECORD. FILE
is classified into three types. They are
= Numeric file
= It contains numeric data.
= Text file
= It consists of text data.

= Data files

= [t consists of data grouped in the form of structure. It may have text,
numeric data or both.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 5.6 FILES data type

= FILE is a structure data type. It is used to establish file buffer area.
= To get buffer area the syntax is
FILE *fp;

= Where fp is a file pointer or stream pointer. fp contains all the
information about file. It serves as link between system and
program. FILE is a keyword. It refers to the file control structure for
streams.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 5.7/ FILES Processing

FILE OPERATION LEVELS
= There are two FILE operation levels. They are

= Low level Input/Output operations
= It uses system calls.
= High level Input/Output operations
= It uses functions in standard C Input Output Library.
= To store data in a file Secondary Memory is used. When a file is

retrieved from an Operating System OS specifies the filename, Data
structures and Purpose.

= Here File name is a string of characters. It contains two parts. First
one is Primary name and then the other is optional period with
extension.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=,

FILES

Function Name)| Operations

fopen() Creates a new file for use. Opens an existing file for
fclose() g?c?s:es a file which has been opened for use.
fgetc() Reads a character from a file.

fputc() Writes a character to the file.

fprintf() Writes set of data values to a file.

fscanf() Reads a set of data values from a file.

getw() Reads an integer from a file.

putw() Writes an integer to afile.

fseek() Sets the position to desired position in the file.
ftell() Gives the current position in the file.

rewind() Sets the position to the beginning of the file
fgets() Reads a string from the file

fputs() Writes a string to the file.

fread() Reads unformatted data from the file

fwrite() Writes unformatted data to the file

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=L 5.8 Opening a file

= "fopen” function is used to open a stream or data file. File should be
opened before reading or writing from it. If a file is opened ‘fopen’
functions returns FILE pointer to the beginning of buffer area. If file
is not opened NULL value is returned.

= The Syntax of fopen is
FILE *fopen("filename”, "mode”);

= fopen() function returns pointer to structure associated with the file.
fopen() function needs two arguments of type string.

= First argument filename refers to the name of file which is to be
opened. Second argument mode refers to file mode.

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

aL. 5.8 Opening a file

File Type Modes of File Operations

Opens new file for writing. If the file exists contents of the file are

overwritten.

Opens a binary file for reading.

Opens existing file for reading and writing.

“w+b” or . _ _
_— Creates and opens binary file for read and write operations.
wb+
“a+b” or ‘ _ _ _
. Opens a binary file for read and write operations.
ab+

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

=t 5.9 C(Closing a file

= File is closed when all input output operations are completed.
= fclose() function is used to close opended file.

= This function makes all buffers associated with the file empty and
all links to the file broken.

= Whenever we want to reopen the same file we have to close all
other file.

= The syntax for closing a file is

fclose(fp);

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.9 C(losing a file

#include< stdio.h >

void main()

{

file *f1;

clrscr();

printf(“Data input output”);
fl=fopen("Input”,"w");

/*Open the file Input*/
while((c=getchar())!=EOF) /*get a character from key board*/
putc(c,f1); /*write a character to input*/
fclose(f1); /*close the file input*/
printf(“\nData output\n”);
fl=fopen(*INPUT","r");

/*Reopen the file input*/
while((c=getc(f1))!=EOF)
printf(*%c”,c);

fclose(f1);

by

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

| 5.9 OPERATIONS ON FILES

= There are eight operations on files. They are

= putc()

= getc()

= getw()

= putw()
= fscanf()
= fread()
=« fprintf()
= fwrite()

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

5.9 OPERATIONS ON FILES

#include< stdio.h >
void main()

{

FILE *f1.*f2 *f3;

int number i;
printf(“Contents of the data file\n\n");
fl=fopen("DATA","W");
for(i=1;i< 30;i++)

{
scanf(*%d"”,&number);
if(number==-1)

break;
putw(number,f1);

by

fclose(f1);
fl1=fopen("DATA","r");
f2=fopen(*ODD","w");
f3=fopen("EVEN","w");

while((number=getw(f1))!=EOF)

/* Read from data file*/

{

if(number%?2==0)

putw(number,f3); /*Write to even file*/
else

putw(number,f2); /*write to odd file*/

)
fclose(fl); fclose(f2); fclose(f3);

f2=fopen(*ODD","r");
f3=fopen("EVEN","r");
printf("\n\nContents of the odd file\n\n");
while(number=getw(f2))!=EOF)
printf(“%d”,number);
printf("\n\nContents of the even file”);
while(number=getw(f3))!=EOF)
printf("%d”,number);

fclose(f2);

fclose(f3);

getch();

}

Presented by: RamyaDevi R /Guru Nanak College (Autonomous)

