GURU NANAK COLLEGE (Autonomous)

VELACHERY ROAD, CHENNAI – 600042

(Re-Accredited 'A' Grade by NAAC)

MASTER OF SCIENCE IN MATHEMATICS

DEPARTMENT OF MATHEMATICS

(SEMESTER SYSTEM WITH CREDITS)

Regulations

&

Syllabus

APPENDIX – 11 (R & S) UNIVERSITY OF MADRAS GURU NANAK COLLEGE (AUTONOMOUS)

DEPARTMENT OF MATHEMATICS PG BOARD OF STUDIES

Committee Members

1. Mr. K. Sivaling	gam- Chairman
--------------------	---------------

- 2. Dr. T. V. Sudharsan-Subject Expert, Academic Council Nominee S.I.V.E.T College, Gowriwakkam, Chennai – 73.
- 3. Dr. T. Jagathesan- Subject Expert, Academic Council Nominee R.K.M.Vivekananda College, Mylapore, Chennai – 04.
- 4. Dr. K. Thangavelu Vice Chancellor Nominee Pachaiyappa's College, E.V.R.Periyar High Road, Chennai – 30.
- 5. Mr.V. Elanchezhiyan Corporate Representative Manager ,HSBC,M.G.R.Salai. Perungudi,Chennai-96.

6. Mr. K. Sivaraman- Meritorious Alumni
Asst. Professor
L. N. Govt. Arts College,
TH Road, Thiruvallur,
Ponneri – 601204.

7. Mr. K. Sivalingam -	Member, Guru Nanak College, Chennai
8. Mrs. N. Murugammal-	Member, Guru Nanak College, Chennai
9. Mr. T. Harikrishnan -	Member, Guru Nanak College, Chennai

10. Mr. K. Manikandan-	Member, Guru Nanak College, Chennai				
11. Mr. E. Thilakraj -	Member, Guru Nanak College, Chennai				

• The meeting (PG board of Studies) was held on Feb 03, 2017 at 2PM at the Dept. of Mathematics, Guru Nanak College.

Minutes of the meeting

- The detailed contents of all the PG Mathematics papers being offered were scrutinized and approved by the committee.
- The committee approve following modification in the syllabus

Paper	Deleted section	Added Section	Changed Paper
Core paper-I Algebra - I	Ch 3:Sec3.6	Ch 2:Sec	
	Ch 4:Sec4.5	2.11, 2.12	
Core paper-I I	Ch 8:Sec8.17,		
Real Analysis-I	8.18,8.20 to 8.23		
	Ch 9:Sec9.13		
Core paper-I V	Ch 5:Sec5.1,		
Graph Theory	5.2		
	Ch 6 :Sec6.2		
Core paper-XII	Ch 5:Sec5.3		
Mechanics			
Core paper-XV	Ch 4:Sec13,14	Ch 2:Sec	
Functional Analysis	Ch 6:Sec23	6.6 to 6.8	
	Ch 7:Sec27,28	Ch 2:	
		Sec7.11	
		Ch 6:Sec	
		22.4	
Elective Paper – V			
_			(New)
(Old)			
Tensor Analysis and			Stochastic
Relativity			Processes

The revised patterns of the question paper starting from 2017-18 onwards as follows and is approved by the committee Section A : Answer any 10 out of 12 questions 10x 3=30 Section B : Answer any 5 out of 7 questions 5x 6=30

<u>GURU NANAK COLLEGE(AUTONOMOUS),</u> <u>Velachery Road, Chennai – 42</u> <u>DEPARTMENT OF MATHEMATICS</u> <u>PG BOARD OF STUDIES</u>

RECEIPT

with thanks from the principal, Guru Nanak College, the honorarium (sitting a sumection with the meeting of the Board of Studies in Mathematics.

MAME		ADDRESS	SIGNATURE
ul⊡⊨ T. V. Sudharsan		Subject Expert, Academic Council Nominee S.I.V.E.T College, Gowriwakkam, Chennai – 73.	(j. v. l)
E Dr. T. Jagathesan		Subject Expert, Academic Council Nominee R.K.M.Vivekananda College, Mylapore, Chennai – 04.	T. Juir.
B De K. Thangavelu	-	Vice Chancellor Nominee Pachaiyappa's College, E.V.R.Periyar High Road, Chennai – 30.	2 C · Y ·
Contraction V. Elanchezhiyan	-	Corporate Representative Manager , HSBC,M.G.R.Salai. Perungudi, Chennai-96.	25-71
K. Sivaraman		Meritorious Alumni Asst. Professor L. N. Govt. Arts College, TH Road, Thiruvallur, Ponneri – 601204.	Kronan-

*			
NAME		ADDRESS	SIGNATURE
L Mr. K. Sivalingam	-	Chairman	k:Sm
2 Dr. T. V. Sudharsan	5	Subject Expert, Academic Council Nominee S.I.V.E.T College, Gowriwakkam, Chennai – 73.	TV FM
3. Dr. T. Jagathesan	•	Subject Expert, Academic Council Nominee R.K.M.Vivekananda College, Mylapore, Chennai – 04.	C.M.
4. Dr. K. Thangavelu	57	Vice Chancellor Nominee Pachaiyappa's College, E.V.R.Periyar High Road, Chennai – 30.	432
5. Mr. V. Elanchezhiyan	-	Corporate Representative Manager , HSBC,M.G.R.Salai Perungudi, Chennai-96.	25-71
6. Mr. K. Sivaraman		Meritorious Alumni Asst. Professor L. N. Govt. Arts College, TH Road, Thiruvallur, Ponneri – 601204.	: Nutrono
7. Mrs. N. Murugammal	-	Member, Guru Nanak Colleg	e, Chennai N Horr
8. Mr. T. Harikrishnan	-	Member, Guru Nanak Colleg	e, Chennai HE.L
9. Mr. K. Manikandan	325	Member, Guru Nanak Colleg	ge, Chennai Renghit.
10. Mr. E. Thilakraj		Member, Guru Nanak Colle	ge, Chennai E Halakie

GURUNANAK COLLEGE (AUTONOMOUS), CHENNAI-42

DEPARTMENT OF MATHEMATICS M.SC., SYLLABUS (W.E.F 2017-2018) COURSE STRUCTURE

		COURS	E STRUCTUI NO .OF.	KE				
						MA	RKS	
SEMESTER	SUBJ	IECT TITLE	HRS PER	EXAM	CREDITS	CIA	UE	TOTAL
		1	WEEK	HRS				
	Core Paper-I	Algebra-I	5	3	4	50	50	100
	Core Paper-II	Real Analysis-I	6	3	4	50	50	100
	Core Paper-III	Ordinary Differential	6	3	4	50	50	100
		Equations						
	Core Paper-IV	Graph Theory	6	3	4	50	50	100
I	Elective paper -I	Fuzzy sets and	6	3	4	50	50	100
		Applications						
	Soft skill Paper-I	Essential of language,	1	3	2	40	60	100
		communication Skills						
	Core Paper-V	Algebra-II	6	3	4	50	50	100
	Core Paper-VI	Real Analysis-II	6	3	4	50	50	100
	Core Paper-VII	Partial Differential	6	3	4	50	50	100
	Equations							
П	Core Paper-VIII	Probability Theory	6	3	4	50	50	100
	Elective paper -II	ctive paper -II Programming in C++		3	4	50	50	100
		and Numerical						
		methods						
	Soft Skill Paper-II	Computing Skills	1	3	2	40	60	100
		Summer Internship	-	-	2	-	-	-
	Core Paper-IX	Complex Analysis -I	6	3	4	50	50	100
	Core Paper-X	Topology	6	3	4	50	50	100
	Core Paper-XI	Operation Research	6	3	4	50	50	100
111	Core Paper-XII	Mechanics	6	3	4	50	50	100
	Elective paper -III	Number theory and	5	3	4	50	50	100
		Cryptography						
	Soft Skill Paper-III	Managerial Skills	1	3	2	40	60	100
	Core Paper-XIII	Complex Analysis-II	6	3	4	50	50	100
	Core Paper-XIV	Differential Geometry	6	3	4	50	50	100
	Core Paper-XV	Functional Analysis	6	3	4	50	50	100
IV	Elective paper -IV	Mathematical	6	3	4	50	50	100
		Statistics						
	Elective paper -V	Stochastic Processes	5	3	4	50	50	100
	Soft Skill paper-	Spoken and	1	3	2	40	60	100
	IV	Presentation Skills						
				TOTAL	00		r	

TOTAL 90

M.SC. DEGREE COURSE IN MATHEMATICS

Scheme of Examinations:

SEMESTER-I

PAPER	COURSE COMPONENTS/TITLE	Credits	Exam	Mai	·ks	Total
NUMBER	COURSE COMPONENTS/TITLE		Hours	CIA	UE	
Core Paper - I	Algebra-I	4	3	50	50	100
Core Paper - II	Real Analysis-I	4	3	50	50	100
Core Paper - III	Ordinary Differential Equations	4	3	50	50	100
Core Paper- IV	Graph Theory	4	3	50	50	100
Elective Paper - I	Fuzzy sets and Applications	4	3	50	50	100
Soft Skill Paper–I	Essential of language and Communication Skills	2	3	40	60	100

Elective - I

Any one of the following courses from Group-A shall be chosen as an Elective-I.

Group-A:

- 1. Formal Languages and Automata Theory
- 2. Discrete Mathematics
- 3. Mathematical Economics
- 4. Fuzzy sets and Applications.

SEMESTER-II

Core Paper - V	Algebra-II	4	3	50	50	100
Core Paper - VI	Real Analysis- II	4	3	50	50	100
Core Paper - VII	Partial Differential Equations	4	3	50	50	100
Core Paper- VIII	Probability Theory	4	3	50	50	100
Elective Paper - II	Programming in C++ and Numerical Methods	4	3	50	50	100
Soft Skill Paper -II	Computing Skills	2	3	40	60	100
	*Summer Internship	2				

Elective-II

Any one of the following courses from Group-B shall be chosen as an Elective-II.

Group-B:

- 5. Programming in C ++ and Numerical Methods
- 6. Mathematical Programming
- 7. Wavelets
- 8. Java Programming
- * Internship will be carried out during the summer vacation of the first year and marks should be sent to the University by the College and the same will be included in the Third Semester Marks Statement.

	SEMESTER-I	11				
PAPER	COURSE	Credits	Exam	Mai	rks	Total
NUMBER	COMPONENTS/TITLE		Hours	CIA	UE	Total
Core Paper - IX	Complex Analysis-I	4	3	50	50	100
Core Paper – X	Topology	4	3	50	50	100
Core Paper - X1	Operations Research	4	3	50	50	100
Core Paper - XII	Mechanics	4	3	50	50	100
Elective Paper -III	Number theory and Cryptography	4	3	50	50	100
Soft Skill Paper -III	Managerial Skills	2	3	40	60	100

SEMESTER-III

Elective-III

Any one of the following courses from Group-C shall be chosen as Elective-III Group-C

- 9. Algebraic Theory of Numbers
- 10. Number Theory and Cryptography
- 11. Tensor Analysis and Relativity
- 12. Data Structures and Algorithms

1. Internship will be carried out during the summer vacation of the first year and marks should be sent to the University by the College and the same will be included in the Third Semester Marks Statement.

SEMESTER-IV

Core Paper - XIII	Complex Analysis-II	4	3	50	50	100
Core Paper - XIV	Differential Geometry	4	3	50	50	100
Core Paper - XV	Functional Analysis	4	3	50	50	100
Elective Paper - IV	Mathematical Statistics	4	3	50	50	100
Elective Paper - V	Stochastic Processes	4	3	50	50	100
Soft Skill Paper -IV	Spoken and Presentation Skills	2	3	40	60	100

Elective-IV

Any one of the following papers from Group-D shall be chosen as Elective-IV.

Group-D:

- 13. Fluid Dynamics
- 14. Combinatorics
- 15. Mathematical Statistics
- 16. Algebraic Topology

Elective-V

Any one of the following papers from Group-E shall be chosen as Elective-V

Group – E

- 17. Stochastic Processes
- 18. Mathematical Physics
- 19. Financial Mathematics
- 20. Calculus of Variations and Integral Equations.

M.Sc. DEGREE COURSE IN MATHEMATICS SYLLABUS

Semester -I Core Paper I- Algebra – I

- UNIT I-Another counting principle, Sylow theorems Applications of Sylow theorems. Recommended *Chapter 2: Section 2.11 and 2.12* of I.N. Herstein (18 hrs)
- UNIT II Direct products : Internal direct product,External direct product, Finite abelian groups :Invariants of groups, Modules : Direct sum of modules, cyclic module, finitely generated module.

Recommended*Chapter 2: Sections 2.13 and 2.14, Chapter 4: Section 4.5 of I.N. Herstein* (18 hrs)

- UNIT III Linear Transformations Canonical forms-Triangular form: Similar Transformation, Invariant under Linear Transformations – Nilpotent transformations.
 Recommended Chapter 6: Sections 6.4, 6.5 of I.N. Herstein (18 hrs)
- UNIT IV Jordan form rational canonical form: companion matrix of f(x). Recommended*Chapter6 : Sections 6.6 and 6.7* of I.N. Herstein(*18 hrs*)

UNIT V - Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form.

Recommended*Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9)* of I.N. Herstein (18 hrs)

Recommended Text :

- 1. J. B. Fraleigh, A first course in Abstract Algebra, 5th edition.
- 2. I. N. Herstein. Topics in Algebra (II Edition) Wiley, 2002.

Reference Books :

- 1. M. Artin, Algebra, Prentice Hall of India, 1991.
- 2. P. B. Bhattacharya, S. K. Jain, and S.R. Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 3. I. S. Luther and I. B. S. Passi, *Algebra*, Vol. I Groups(1996); Vol. II Rings(1999), Narosa Publishing House, New Delhi
- 4. D. S. Dummit and R. M. Foote, *Abstract Algebra*, 2nd edition, Wiley, 2002.
- 5. N. Jacobson, *Basic Algebra*, Vol. I & II W. H. Freeman (1980); also published by Hindustan Publishing Company, New Delhi.

Title of the Course Core Paper II-REAL ANALYSIS –					'SIS –I		
Paper N	lumber			I			
Category	Core	Year	1	Credits	4	Course	
		Compositor		-		Code	
		Semester	1				
Pre-requisite	e	An introduc	ctory real and	alysis course			
Course Outli	ine	monotonic f Additive pro- of x - Functi increasing fu Recomment Infinite Seri and Abel's t Recomment of Tom M. A UNIT-II : Th definition of Integration I Reduction Monotonica and linearity - Compariso <i>Recomment</i> of TomM.Ap UNIT-III : Th variation-Su integrals-Ne integrals as integrals as integral calc Value The depending Lebesguecrit	functions - F poerty of tota ions of bour unctions - Co nded Chapter ies : Absolut eest. nded Chapter opostol(18 hr e Riemann - of the Riem by parts- Ch to a Rieman by parts- Ch to a Rieman illy increasing y properties of n theorems. IndedChapter ostol The Rieman fficient con ecessary con fean value to a function of culus-Change or a para teriaon for th	iunctions of la al variation - inded variation ntinuous func- 6 : Section a and condit 7 - 6 : Section 8 : Sections 5) 5 tieltjes Int ann - Stie ange of varia ann Integral g integrators, of upper and r - 7 : Section n-Stieltjes I ditions for ditions for cheorems for of the interva e of variable Riemann meter-Difference of existence of	bounded var Total variation in expressed ctions of bounds 6.1 to 6.8 ctional convert 8.8, 8.15 egral - Intro Itjes integra ble in a Riem – Euler's Upper and I lower integra Iower integra 7.1 to 7.14 Integral - I the existence the existence the existence the existence the existence and - Second fi in a Riemann - an - Second fi in a Riemann integral-Riem entiation un of Riemann integral-Riem	ntegrators o ce of Riema Stieltjes inte fundamental in integral-Se nann-Stieltjes	I variation - s a function ence of two on. ostol chlet's test tation - The Properties - es integral - formula - ls - Additive 's condition (18 hrs) of bounded ann-Stieltjes egrals - The theorem of cond Mean s integrals egral sign-

	UNIT-IV :Infinite Series and infinite Products - Multiplication of series -							
	Cesarosummability - Infinite products.							
	Recommended Chapter - 8 Sec, 8.20, 8.21 to 8.26							
	Power series - Multiplication of power series - The Taylor's series							
	generated by a function - Bernstein's theorem - Abel's limit theorem -							
	Tauber's theorem							
	RecommendedChapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23 of Tom M.Apostol (18 hrs)							
	UNIT-V: Sequences of Functions - Pointwise convergence of sequences of							
	functions - Examples of sequences of real - valued functions - Definition of uniform convergence - Uniform convergence and continuity - The Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Uniform convergence and Riemann - Stieltjes							
	integration – Non-uniform Convergence and Term-by-term Integration -							
	Uniform convergence and differentiation - Sufficient condition for uniform							
	convergence of a series.							
	RecommendedChapter -9 Sec 9.1 to 9.6, 9.8,9.9, 9.10,9.11 of Tom (18 hrs)							
Recommended Text	Tom M. Apostol : <i>Mathematical Analysis</i> , 2 nd Edition, Narosa, 1989.							
Reference Books	1. Bartle. R. G, Real Analysis, John Wiley and Sons Inc., 1976.							
	2. Rudin. W, Principles of Mathematical Analysis, 3 rd Edition. McGraw Hill Company, New York, 1976.							
	3. Malik. S. C, and SavitaArora. <i>Mathematical Analysis</i> , Wiley Eastern Limited. New Delhi, 1991.							
	4. Sanjay Arora and BansiLal, Introduction to Real Analysis,							
	SatyaPrakashan, New Delhi, 1991.							
	5. Gelbaum. B. R, and J. Olmsted, <i>Counter Examples in Analysis</i> , Holden day, San Francisco, 1964.							
	6. A. L. Gupta and N. R. Gupta, <i>Principles of Real Analysis</i> , Pearson Education, (Indian print) 2003.							

Core Paper III - Ordinary Differential Equations

UNIT-I : Linear equations with constant coefficients

Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian-Non-homogeneous equation of order two.

Recommended Chapter 2: Sections 1 to 6ofE.A.Coddington

UNIT-II :Linear equations with constant coefficients

Homogeneous and non-homogeneous equation of order n –Initial value problems-Annihilator method to solve non-homogeneous equation.

Recommended Chapter 2 : Sections 7 to 11 of E.A. Coddington

UNIT-III :Linear equation with variable coefficients

Initial value problems -Existence and uniqueness theorems – Solutions to solve a non-homogeneous equation – Wronskian and linear dependence – Reduction of the order of a homogeneous equation – Homogeneous equation with analytic coefficients-The Legendre equation.

Recommended Chapter : 3 Sections 1 to 8 (omit section 9) of E.A.Coddington

UNIT-IV :Linear equation with regular singular points

Second order equations with regular singular points –Exceptional cases – Bessel equation .

Recommended Chapter 4 : Sections 3, 4 and 6 to 8 (omit sections 5 and

9)ofE.A.Coddington

UNIT-V : Existence and uniqueness of solutions to first order equations:

Equation with variable separated – Exact equation – Method of successive approximations – the Lipschitz condition – Convergence of the successive approximations and the existence theorem.

Recommended Chapter 5 : Sections 1 to 6 (omit Sections 7 to 9) of E.A. Coddington

Recommended Text

E.A.Coddington, *An introduction to ordinary differential equations* (3rd Printing) Prentice-Hall of India Ltd., New Delhi, 1987.

Reference Books

- 2. Williams E. Boyce and Richard C. Di Prima, *Elementary differential equations* and boundary value problems, John Wiley and sons, New York, 1967.
- 3. George F Simmons, *Differential equations with applications and historical notes*, Tata McGraw Hill, New Delhi, 1974.
- 3. N.N. Lebedev, *Special functions and their applications*, Prentice Hall of India, New Delhi, 1965.
- 4. W.T.Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- 5. M.D.Raisinghania, Advanced Differential Equations, S.Chand& Company Ltd. New Delhi 2001
- 6. B.Rai, D.P.Choudhury and H.I. Freedman, *A Course in Ordinary DifferentialEquations*, Narosa Publishing House, New Delhi, 2002.

	e Course		Core	Paper IV -		HEORY			
Paper N					V		T		
Category	Core- IV	Year	I	Credits	4	Course			
		Semester	1			Code			
		Semester	1						
Pre-requisit	e	An element	ary course in	n algebra	1				
Course Out	ine	UNIT-I : Gra	aphs, subgra	phs and Tree	s : Graphs	and simple gra	phs – Graph		
		Isomorphism	n – The Incid	ence and Ad	jacency Ma	itrices – Subgra	aphs –		
		Vertex Degr	ees – Paths a	and Connecti	on – Cycles				
		Recomme	nded Chapte	er 1 (Section	1.1 – 1.7)o	f J.A.Bondy and	d U.S.R.		
		Murty							
		Omit Sectio							
				-	: Trees – C	Cut Edges and E	Bonds-		
			– Connectivi	•					
			-	er 2 (Section	-				
		Chapter 3 (Section 3.1 – 3.2) of J.A.Bondy and U.S.R. Murty							
		Omit Sections 2.4 & 2.5							
		Omit Sections 3.3							
		UNIT-III: Euler Tours, Hamilton Cycles and Edge Colourings: Euler Tours,							
		-	-	hromatic Nur					
			-	er 4 (Section	-				
		Chapter 6 (Section 6.1) of J.A.Bondy and U.S.R. Murty							
		Omit Sections 4.3 & 4.4							
		Omit Sections 6.2 & 6.3							
		UNIT-IV: Independent sets and Cliques, Vertex Colourings : Independent							
		sets – Ramsey's Theorem – Chromatic Number – Brooks' Theorem –							
		Chromatic F	olynomials.						
		Recommended Chapter 7 (Section 7.1 – 7.2)							
		Chapter 8 (Section 8.1 – 8.2, 8.4) omitted section 8.3of J.A.Bondy and							
		U.S.R. Murty							
		Omit Sectio	ns 7.3, 7.4 &	7.5					
		Omit Sections 8.3, 8.5 & 8.6							
			•	•	•	s – Dual graph			
		Formula – The Five- Colour Theorem and the Four-Colour Conjecture.							
		Recommended Chapter 9 (Section 9.1 – 9.3, 9.6)omitted sections &9.5of J.A.Bondy and U.S.R. Murty							
		Omit Sectio	ns 9.4, 9.5, 9	0.7 & 9.8					
Recomme	nded Text	J.A.Bondy a	nd U.S.R. Mu	rty <i>,Graph Tl</i>	heory and A	Applications , N	Macmillan,		
		London,	1976.						

Reference Books	1. J.Clark and D.A.Holton , <i>A First look at Graph Theory</i> , Allied
	Publishers, New Delhi , 1995.
	2. R. Gould. <i>Graph Theory</i> , Benjamin/Cummings, Menlo Park, 1989.
	3. A.Gibbons, <i>Algorithmic Graph Theory</i> , Cambridge University Press,
	Cambridge, 1989.
	4. R.J.Wilson and J.J.Watkins, Graphs : An Introductory Approach,
	John Wiley and Sons, New York, 1989.
	5. R.J. Wilson, <i>Introduction to Graph Theory</i> , Pearson Education, 4 th
	Edition, 2004, Indian Print.
	6. S.A.Choudum, A First Course in Graph Theory, MacMillan India Ltd.
	1987.

ELECTIVE PAPER-I

Title of the	e Course	A2. FUZZY SETS AND THEIR APPLICATIONS								
Paper N	lumber			V	V					
Category	Elective-II	Year	I	Credits	4	Course				
			-	-		Code				
		Semester	I							
Pre-requisit	e	Knowledge of graphs, relations, composition								
Course Outl	ine			Notions: Rev						
		-	-	subset, Dom		-				
		-	-	osets, Set of	-					
		-		fuzzy subset	s, Product a	and algebraid	: sum of			
		two fuzzy subsets.								
		RecommendedChapter I: Sec. 1 to 8 of A. Kaufman (18								
		UNIT-II : Fuz	zzy Graphs:	Fuzzy relation	ons, compos	ition of Fuzz	<u>v</u> y			
		relations, Fu	izzy subsets	s induced by	a mapping,	conditioned	Fuzzy			
		subsets, Pro	perties of F	uzzy binary ı	relations, Tr	ansitive clos	ure of a			
		Fuzzy binary	relations,	Paths in a fin	ite Fuzzy gr	aphs.				
		Recommen	nded Chapt	er II: Sec. 10	to 18					
		of A. Kaufman (18								
		UNIT-III : Fu	zzy Relatio	ns: Fuzzy pre	order relati	ons, Similitu	de			
		relations, Similitude subrelations in a fuzzy preorder, Antisymmetry,								
		Fuzzy order relations, Antisymmetric relations without loops. Ordinal								
		relations. Ordinal functions in a fuzzy order relation, Dissimilitude								
		relations, Resemblance relations, Various properties of similitude and								
		resemblance, Various properties of fuzzy perfect order relations.								
		Recommen	nded Chapt	RecommendedChapter II: Sec. 19 to 29 of A. Kaufman (18 hrs)						

	 UNIT-IV : Fuzzy Logic: Characteristic function of a fuzzy subset. Fuzzy variables, Polynomial forms, Analysis of a function of fuzzy variables. Method of Marinos, Logical structure of a function of fuzzy variables, Composition of intervals, Fuzzy propositions and their functional representations, The theory of fuzzy subsets and the theory of probability. RecommendedChapter III: Sec.31 to 40 (omit Sec. 37, 38, 41) of A. Kaufman
	(18 hrs)
	UNIT-V :The Laws of Fuzzy Composition: Review of the notion of a law of composition, Laws of fuzzy internal composition. Fuzzy groupoids, Principal properties of fuzzy groupoids, Fuzzy monoids, Fuzzy external composition, Operations on fuzzy numbers. Recommended Chapter IV: Sec.43 to 49 of A. Kaufman
	(18 hrs)
Recommended Text	A. Kaufman, Introduction to the theory of Fuzzy subsets, Vol. I,
	Academic Press, New York, 1975.
Reference Books	1. H. J. Zimmermann, <i>Fuzzy Set Theory and its Applications</i> , Allied Publishers, Chennai, 1996
	2. George J. Klir and Bo Yuan, <i>Fuzzy sets and Fuzzy Logic-Theory and Applications</i> , Prentice Hall India, New Delhi, 2001.

Semester – II

Core Paper V - Algebra – II

 UNIT I- Extension fields: Degree of extension fields, algebraic element, algebraic extension - Transcendence of e. Recommended<i>Chapter 5: Section 5.1 and 5.2 of I. N. Herstein</i> (18 hrs) UNIT II -Roots of Polynomials: Simple roots, multiplicity roots, Splitting fie More about roots: derivative of f(x), simple extension 	ld-
Recommended Chapter 5: Sections 5.3 and 5.5 of I. N. Herstein	(18 hrs)
UNIT III -Elements of Galois theory: Fixed field, Group of automorphisms a Splitting field of the polynomials, Normal extension of field, Galois group. Recommended <i>Chapter 5 : Section 5.6 of I. N. Herstein</i>	relative to field, (18 hrs)
UNIT IV -Finite fields - Wedderburn's theorem on finite division rings Recommended <i>Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)</i> of I. N. Herstein	(18 hrs)
UNIT V -Solvability by radicals–Galois groups over the rational –A theorem On Frobenius. Recommended <i>Chapter 5: Sections 5.7 and 5.8</i> <i>Chapter 7: Sections 7.3 of I. N. Herstein</i>	(18 hrs)

Recommended Text :

I. N. Herstein. Topics in Algebra (II Edition) Wiley 2002

Reference Books :

- 1. M. Artin, *Algebra*, Prentice Hall of India, 1991.
- 2. P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 3. I. S. Luther and I. B. S. Passi, *Algebra*, Vol. I Groups(1996); Vol. II Rings, (1999) Narosa Publishing House , New Delhi.
- 4. D. S. Dummit and R. M. Foote, *Abstract Algebra*, 2nd edition, Wiley, 2002.
- 5. N. Jacobson, *Basic Algebra*, Vol. I & II Hindustan Publishing Company, New Delhi.

Title of th	e Course	Core Paper VI - REAL ANALYSIS – II							
Paper N	Number	VIII							
Category	Core- VI	Year	I	Credits	4	Course			
		Constant		-		Code			
		Semester	П						
Pre-requisit	e	Real Analys	is-l						
	•			Deal Page 1	- h		N 4		
Course Outl	Course Outline		UNIT-I : Measure on the Real line - Lebesgue Outer Measure - Measurable						
		Measurabili	sets - Regularity - Measurable Functions - Borel and Lebesgue						
			•	7 5 6 6 7 1 4	ha 7 E af da E) or ro			
			-	er - 2 Sec 2.1			ion of Non		
			-			ble - Integrat Riemann and			
		Integrals		ne General	integral - I		i renesane		
		_	nded Chante	er - 3 Sec 3.1,	3 2 and 3 4 o	f de Barra			
			-			ntroduction -	Orthogonal		
					-	roximation -	-		
						system - Pi			
						- The conve	•		
						series - The			
		-	-	-	-	tegral repres			
		-			-	localization			
		Sufficient co	onditions for	convergenc	e of a Fouri	er series at	a particular		
		point - Ces	arosummabi	ility of Four	ier series- C	Consequences	s of Fejes's		
		theorem - T	he Weierstra	iss approxima	ation theoren	n			
		Recommen	nded Chapte	er 11 : Section	ns 11.1 to 11.	.15 of Aposto			
		UNIT-IV :	Multivariab	le Different	ial Calculus	- Introduct	tion - The		
		Directional derivative - Directional derivative and continuity - The total							
		derivative - The total derivative expressed in terms of partial derivatives -							
		The matrix of linear function - The Jacobian matrix - The chain rule - Matrix							
		form of chain rule - The mean - value theorem for differentiable functions							
		- A sufficient condition for differentiability - A sufficient condition for							
		equality of mixed partial derivatives - Taylor's theorem for functions of to R^1							
		Recommended Chapter 12 : Section 12.1 to 12.14 of Apostol							
		UNIT-V : Im	plicit Functic	ons and Extre	mum Proble	ms : Functior	ns with non-		
		zero Jacobia	an determina	ants – The ir	nverse functi	on theorem-	The Implicit		
		function theorem-Extrema of real valued functions of severable varia							
		Extremum problems with side conditions.							
		Recommen	nded Chapte	er 13 : Section	ns 13.1 to 13	.7 of Apostol			
Recomment	ded Text	1. G. de Bar 2003 (for Ur		Theory and Ir	tegration, N	ew Age Interi	national,		
				nematical And	alysis, 2 nd Edi	tion, Narosa	1989 (for		
		Units III,	IV and V)						

Reference Books	1.	Burkill,J.C. <i>The Lebesgue Integral</i> , Cambridge University Press, 1951.
	2.	Munroe,M.E. <i>Measure and Integration</i> . Addison-Wesley, Mass.1971.
	3.	Royden,H.L. <i>Real Analysis</i> , Macmillan Pub. Company, New York, 1988.
	4.	Rudin, W. Principles of Mathematical Analysis, McGraw Hill Company, New York,1979.
	5.	Malik,S.C. and SavitaArora. <i>Mathematical Analysis,</i> Wiley Eastern Limited. New Delhi, 1991.

<u>Core Paper – VII - Partial Differential Equations</u>

<u>UNIT – I</u>

Fundamental Concepts :

Introduction - Classification of Second Order PDE - Canonical Forms : Canonical Form for Hyperbolic

Equation, Canonical Form for Parabolic Equation, Canonical Form for Elliptic Equation.

Recommended Section 1.1 to 1.3 of k.SankaraRao

<u>UNIT – II</u>

Elliptic Differential Equations :

Occurrence of the Laplace and Poisson Equations: Derivation of Laplace Equation, Derivation of Poisson Equation. Boundary Value Problem (BVPs) – Some important Mathematical tools - Separation of Variables – Dirichlet Problem for a Rectangle - The Neumann Problem for a rectangle - Interior Dirichlet Problem for a Circle – Exterior Dirichlet Problem for a Circle – Interior Neumann Problem for a Circle-Solution of Laplace equation in cylindrical coordinates.

Recommended Section 2.1 to 2.3, 2.5 to 2.11 of k.SankaraRao

<u>UNIT – III</u>

Parabolic Differential Equations:

Occurrence of The Diffusion Equation –Boundary Conditions – Elementary Solutions of the Diffusion Equation – Dirac Delta Function – Separation of Variables Method – Solution of diffusion equation in cylindrical coordinates.

Recommended Section 3.1 to 3.6 of k.SankaraRao

UNIT –IV

Hyperbolic Differential Equations :

Occurrence of the Wave Equation – Derivation of One-dimensional Wave Equation – Solution of Onedimensional Wave Equation by Canonical Reduction – The Initial Value Problem ; D'Alembert's Solution – Vibrating String : Variables Separable Solution - Forced Vibrations: Solution of Nonhomogeneous Equation – Boundary and Initial Value Problem for Two-dimensional Wave Equations: Method of Eigenfunction.

Recommended Section 4.1 to 4.7 of k.SankaraRao

<u>UNIT –V</u>

Green's Function:

Introduction – Green's function for Laplace equation – the methods of Images – the eigenfunction method – Green's function for the wave equation: Helmholtz theorem – Green's function for the Diffusion equation.

Recommended Section 5.1.to 5.6. ofk.SankaraRao

Recommended Text

"Introduction to Partial Differential Equation" byk.SankaraRao, Third Edition, PHI Learning Private Limited.

Reference Books

- 1. R.C Mc.Owen, Partial Differential Equations, 2nd edition Pearson Education. New Delhi,2005.
- 2. I.N.Sneddon, Elements of Partial Differential Equations, McGraw Hil, News Delhi, 1983.
- 3. R. Dennemeyer, Introduction to Partial Differential Equations and Boundry Value Problems, McGraw Hill, New York, 1968.
- 4.T.Amarnath, Partial Differential Equations, Narosa publishing House

Title of th	e Course		Core Pap	er VIII -PR	OBABILIT	Y THEORY		
Paper N	lumber	X						
Category	Core- VIII	Year	I	Credits	4	Course		
				-		Code		
		Semester	11					
Pre-requisit	e	UG level ca	Iculus and re	al analysis	1		I	
Course Outline		 UNIT-I : Random Events and Random Variables: Random events Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random Variables – Distribution Function – Joint Distribution – Marginal Distribution – Conditional Distribution – Independent random variables – Functions of random variables. RecommendedChapter 1: Sections 1.1 to 1.7 						
		The (param first ar	 Chapter 2 : Sections 2.1 to 2.9 of M. Fisz UNIT-II : Parameters of the Distribution : Expectation- Moments – The Chebyshev Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types. RecommendedChapter 3 : Sections 3.1 to 3.8 of M. Fisz 					
		UNIT-III: Characteristic functions : Properties of character functions – Characteristic functions and moment semi0invariants – characteristic function of the sum of independent random variables – Determination of distribu- function by the Characteristic function – Characteristic func- of multidimensional random vectors – Probability gener functions.					oments – um of the distribution tic function	
		RecommendedChapter 4 : Sections 4.1 to 4.7 of M. Fisz UNIT-IV :Some Probability distributions: One point , two point , Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions. RecommendedChapter 5 : Section 5.1 to 5.10 (Omit Section 5.11) of M.						
	Fisz UNIT-V:Limit Theorems : Stochastic convergence – Bernaulli large numbers – Convergence of sequence of distr functions – Levy-Cramer Theorems – de Moivre-L Theorem – Poisson, Chebyshev, Khintchine Weak law of numbers – Lindberg Theorem – LapunovTheroem – Cantelli Lemma - Kolmogorov Inequality and Kolm Strong Law of large numbers.				distribution re-Laplace aw of large – Borel- Colmogorov			
	RecommendedChapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9 , 6.11 and 6.					1 and 6.12.		
		-		,6.13 to 6.15)				
Recomment	ded Text		-	-	ematical Stat	<i>istics,</i> John W	'iley and	
		Sons, New York, 1963.						

Reference Books	1. R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972				
	2. K.L.Chung, A course in Probability, Academic Press, New York, 1974.				
	4. R.Durrett, <i>Probability : Theory and Examples</i> , (2 nd Edition) Duxbury				
	Press, New York, 1996.				
	5. V.K.RohatgiAn Introduction to Probability Theory and Mathematical				
	Statistics, Wiley Eastern Ltd., New Delhi, 1988(3 rd Print).				
	6. S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.				
	7. B.R.Bhat , <i>Modern Probability Theory</i> (3 rd Edition), New Age				
	International (P)Ltd, New Delhi, 1999				

ELECTIVE PAPER - II

Title of th	e Course	A4. PROGRAMMING IN C++ AND NUMERICAL METHODS (Theory 75 marks(UE) + Computer Laboratory 25 marks(CIA))						
Paper N	lumber		V					
Category	Elective-II	Year	I	Credits	4	Course		
		Compositor	1			Code		
		Semester	1					
Pre-requisit	e	Basics of co	omputer pro	ogramming	-1			
Course Outl	ine	UNIT-I :						
		Tokens, Exp	ressions an	d Control St	ructures – F	unctions in C	++	
		Recommen	ndedChapt	ers: 3 and 4	of (Balagur	usamy)		
		UNIT-II :			-			
		Classes and	Objects – C	onstructors	and Destrue	ctors – Opera	ator	
		Overloading	g and Type o	conversions				
		RecommendedChapters : 5, 6 and 7of(Balagurusamy)						
		UNIT-III :						
		Inheritance	– Pointers -	- Virtual Fun	ictions and I	Polymorphisr	n	
		Recommen	nded Chapt	ers 8 and 9	of(Balaguru	samy)		
		UNIT-IV :						
				on of Nonlir		• • •		
						of (John H.N	lathews)	
			•	-		proximation c. 4.5 & 4.6)	oflohn	
		H.Mathews	•	ei 4. 4.1 to -	+.4 (Unit Se	C. 4.5 & 4.0)		
		UNIT-V : Cu						
			•	er 5: Sec. 5.1	1 to 5.3 (om	it Sec. 5.4)of	(John	
		H.Mathews			2 10 515 (611		(50111	
		Solution of I	•	Equations				
				•	1 to 9.6 (om	it 9.7 to 9.9)	of(John	
		H.Mathews	•		·		•	
Recommend	ded Text	E. Balagurus	amy, Objec	t Oriented P	Programmin	g with C++, T	ata	
		McGraw	Hill, New D	elhi, 1999.				
		John H.Mathews, Numerical Methods for Mathematics, Science and						
		Engineer	<i>ing</i> (2 nd Edr	n.), Prentice	Hall, New D	elhi, 2000		
Referenc	e Books	1.D. Ravicha	andran, Prog	gramming w	<i>vith</i> C++, Tat	a McGraw Hi	ill, New	
		Delhi, 199						
			d de Boor,	Numerical A	nalysis, Mc	Graw Hill, Ne	w York,	
		1990						

Semester III

Core Paper IX - Complex Analysis - I

UNIT I - Cauchy's Integral Formula: The Index of a point with respect o a closed curve - The Integral formula - Higher derivatives.
 Local Properties of Analytical Functions :Removable Singularities-Taylors's Theorem-Zeros and poles-The local Mapping - The Maximum Principle .
 Recommended Chapter 4 : Section 2 : 2.1 to 2.3, Section 3 : 3.1 to 3.4 of Lars V. Ahlfors

UNIT II - The general form of Cauchy's Theorem : Chains and cycles-

SimpleConnectivity -Homology - The General statement of Cauchy's Theorem -Proof of Cauchy's theorem – Locally exact differentials-Multilply connected regions – Residue theorem - The argument principle. Recommended*Chapter 4 : Section 4 : 4.1 to 4.7, Section 5: 5.1 and 5.2*ofLars V. Ahlfors

UNIT III - Evaluation of Definite Integrals and Harmonic Functions:

Evaluation of definite integrals - Definition of Harmonic functions and basic properties - Mean value property - Poisson formula. Recommended *Chapter 4 : Section 5 : 5.3, Section 6 : 6.1 to 6.3* of Lars V. Ahlfors

UNIT IV - Harmonic Functions and Power Series Expansions:

Schwarz theorem - The reflection principle - Weierstrass theorem - Taylor Series - Laurent series . Recommended*Chapter 4 : Sections 6.4 and 6.5* Chapter 5 : Sections 1.1 to 1.3ofLars V. Ahlfors

UNIT V - Partial Fractions and Entire Functions: Partial fractions-

Infinite products - Canonical products - Gamma Function -Jensen's formula RecommendedChapter 5 : Sections 2.1 to 2.4, Section 3.1ofLars V. Ahlfors

Recommended Text :

Lars V. Ahlfors, Complex Analysis, (3rd edition) McGraw Hill Co., New York, 1979

Reference Books :

1. H.A. Priestly, Introduction to Complex Analysis, Clarendon Press, Oxford, 2003.

- 2. J.B.Conway, Functions of one complex variable, Springer International Edition, 2003
- 3. T.W Gamelin, Complex Analysis, Springer International Edition, 2004.
- 4. D.Sarason, Notes on complex function Theory, Hindustan Book Agency, 1998

Core Paper X – Topology

 Unit I - Topological spaces, Basis for a topology, Product topology on X xY,Subspace topology, Closed sets and Limit points, Continuous functions. Recommended<i>Chapter 2 - Sections 12, 13, 15, 16, 17, 18.</i> 	
ofJames R. Munkres	(18 hrs)
Unit II - Connected spaces, Connected subspaces of the real line, Components and Localconnectedness, Compact spaces, Compact subspaces of the real line Recommended <i>Chapter 3 - Sections 23, 24, 25, 26, 27</i> .	
ofJames R. Munkres	(18 hrs)
 Unit III - Countability axioms, Separation axioms, Normal spaces, UrysohnLemma, Urysohnmetrization theorem, Tietze extension theorem. Recommended<i>Chapter 4 - Sections 30, 31, 32, 33, 34, 35.</i> <i>of</i>James R. Munkres 	(18 hrs)
 Unit IV - Product topology: J-tuple of elements, Cartesian product, box topology, J topology, Tychonoff theorem. Recommended<i>Chapter 2 - Sections 19. of</i>James R. Munkres <i>Chapter 5 - Section 37.</i> 	product (18 hrs)
 Unit V - Homotopy of paths: homotopic, null homotopic, path homotopic, product paths, Fundamental group: loop, fundamental group, simply connected se homomorphism induced by a map. Recommended<i>Chapter 9 - Sections 51, 52. of</i> James R. Munkres 	

<u>Recommended Text</u> :

James R. Munkres "Topology" (Second edition) PHI, 2015.

<u>Reference Books</u> :

- 1. T. W. Gamelin and R.E. Greene, *Introduction to Topology*, The Saunders Series, 1983.
- 2. G. F. Simmons, Introduction to Topology and Modern Analysis, Mcgraw-Hill
- 3. J. Dugundji, *Topology*, Prentice Hall of India.
- 4. J. L. Kelly, General Topology, Springer.
- S. Willard, General Topology, Addison-Wesley.

Title of the Course		OPERATIONS RESEARCH						
Core Paper Number		XI						
Category	Core- XI	Year	II	Credits	4	Course		
		Semester		-		Code		
Pre-requisit	e	UG Level C	perations Re	esearch				
Pre-requisite Course Outline		Decision-M Decision M – Decision [–] Recomme UNIT-II : Ne Definition – Maximum f Network re Network sin Recomme H.A.Taha : UNIT-III : D Control – I Features of Inventory Shortages Probabilist Single Peri Probabilitie Recomme Chapter 14 UNIT-IV : Q Operating C Queueing F Erlangian Su	aking Enviror aking under I Tree Analysis anded Chapte twork Mode - Minimal spa flow model – presentation mplex Algorit nded Chapte Operations R teterministic Functional Cl funcentory S Models with ic Inventory S Models with ic Inventory S Models with s Model with nded Chapte : Sec. 14.1 to pueueing The Characteristic Systems – C Models – Pro ervice times I	Aments – De Risk – Poster – Decision M er 10 : Sec. 1 els : Scope of Aminimum co – Linear Pro- hm. er 6 : Section esearch Inventory (assification ystem – Inve n no short: Control Moc stic Models n Setup cost. er 13: Sec. 13 fory : Esse c of Queuein Classification bability Dist Distribution	cision Mak ior Probabi Making with 0.1 to 10.8 of Network Algorithm – ost capacita ogramming ns 6.1 to 6.6 Control Mc – Advanta entory Mod age – De Hels: without S 3.1 to 13.8 narma ntial Featu g System – of Queue tribution of with k-Phas	Applications – I Applications – I Shortest Route ated flow proble formulation – C 5of odels: Meaning ge of Carrying del building - E terministic Inve Setup cost – S ures of Queueir Probabilistic Di eing Models – f Arrivals and E	rtainty – Sian Analysis Network problem – em – Capacitated of Inventory Inventory – Deterministic entory with ingle Period	

	 UNIT-V: Replacement and Maintenance Models: Failure Mechanism of items – Replacement of Items that deteriorate with Time – Replacement of items that fail completely – other Replacement Problems. Recommended Chapter 16: Sec. 16.1 to 16.5 of J.K.Sharma
Recommended Texts	 For Unit 2 : H.A. Taha, <i>Operations Research</i>, 6th edition, Prentice Hall of India For all other Units: J.K.Sharma, <i>Operations Research</i>, MacMillan India,
	New Delhi, 2001.
Reference Books	1. F.S. Hiller and J.Lieberman -, <i>Introduction to Operations Research</i> (7 th Edition), Tata McGraw Hill Publishing Company, New Delhui, 2001.
	2. Beightler. C, D.Phillips, B. Wilde <i>,Foundations of Optimization</i> (2 nd Edition) Prentice Hall Pvt Ltd., New York, 1979
	3. Bazaraa, M.S; J.J.Jarvis, H.D.Sharall <i>,Linear Programming and Network flow,</i> John Wiley and sons, New York 1990.
	4. Gross, D and C.M.Harris, <i>Fundamentals of Queueing Theory</i> , (3 rd Edition), Wiley and Sons, New York, 1998.

Title of the Course		MECHANICS							
Core Pape	Core Paper Number		XII						
Category	Core	Year	II	Credits	4	Course			
						Code			
		Semester							
Pre-requisit	e	Calculus and Differential equations.							
Course Out	ine	motion, Un coordinate non holono displaceme principle, G work and k stability, ki momentum Recomme UNIT-II : La Kinetic ene non holono pendulum, whirling tu system. Int problem. R Liouville's s Recomme Greenwood UNIT-III : H values of a definite int variables, H Hamilton's the Hamilt	its. Gener s, configu- mic cons ent, Virtue Generalise inetic en anetic ene a ended C agrange' argy, Lagr omic syste Lagrange' be, partie egrals of outhian f system. ended Cl d d d d d d d d d d d d d d d d d d d	ralised coordina iration space. Co traints, Unilate al work, princip ed force. Energy ergy, conservat. rgy of a system, hapter 1 : Sec S Equations : De- range's Equation e multipliers and cle with moving motion- Ignora function, conser hapter 2 : Section to constrained state amples – geode. 's principle, non n – Derivation of hatton, Legendre d Hamiltons pri	ites – Degi onstraints ral constra le of virtue and Momi ion of ener angular r ctions 1.1 erivation of support, i ble coordi vative syst ons 2.1 to Hamilton f Hamilton f Hamilton f Hamilton f Hamilton	cal system- Equa rees of freedom, - Holonomic co aints. Virtual wo al work, D'Aleml eentum - Potenti rgy, equilibrium momentum, Gene to 1.5 of D. G to 1.5 of D. G of Lagrange's eq of the equations of pendulum, Doub int forces, Partic rheonomic const nates, Example-t tems, Natural sys 2.3 (Omit Sectio 's Principle – Stat alues, stationary ase of n depende ic systems, multi n's equations, the nation. Other va inciple of least ac 4.3 (Omit sectio	Generalised nstraints, pork – Virtual bert's ial energy, and eralised reenwood (18 hrs) quations- of motion, le le in rained he Kepler stems, in 2.4) of D. (18 hrs) tionary value of a nt plier rule. e form of riational ction.		

	UNIT – IV : Hamilton-Jacobi Theory : Hamilton Principle function – The canonical integral, Ptaffian differential forms. Hamilton-Jacobi Equation Recommended Chapter 5 : Sections 5.1 to 5.2of D. Greenwood (18 hrs)
	UNIT-V :Canonical Transformation : Differential forms and generating functions - canonical transformations, principal forms of generating functions, Further comments on the Hamilton-Jacobi method. Special Transformations– some special transformations, Homogeneous canonical transformations, point transformations, momentum transformations. Lagrange and Poisson brackets- Legendre brackets, Poisson brackets, The bilinear covariant. Recommended Chapter 6 : Sections 6.1, 6.2 and 6.3 (omit sections 6.4, 6.5 and 6.6) of D. Greenwood
	(18 hrs)
Recommended Text	D. Greenwood, <i>Classical Dynamics</i> , Prentice Hall of India, New Delhi, 1985.
Reference Books	1. H. Goldstein, <i>Classical Mechanics</i> , (2 nd Edition) Narosa Publishing House, New Delhi.
	 N.C.Rane and P.S.C.Joag, <i>Classical Mechanics</i>, Tata McGraw Hill, 1991. J.L.Synge and B.A.Griffth, <i>Principles of Mechanics</i> (3rd Edition) McGraw Hill Book Co., New York, 1970.

ELECTIVE PAPER - III

Title of the Course		NUMBER THEORY AND CRYPTOGRAPHY							
Paper Number									
Category	Elective-	Year	П	Credits	4	Course			
0,	Ш					Code			
		Semester	IV						
Pre-requisi	te	Elementary number theory and calculus							
Course Out	line	UNIT-I :Eler	mentary Nu	mber Theor	'y :				
		Time Estima	ates for doi	ng arithmeti	c – divisib	ility and Euclid	lean		
		algorithm –	Congruenc	es – Applica	tion to fac	ctoring.			
		Recommen	ded Chapte	er 1 of Neal	Koblitz.		(18 hrs)		
		UNIT-II : Int	troduction t	o Classical (Crypto sys	stems			
		Some simple crypto systems – Enciphering matrices DES							
		Recommended Chapter 3 of Neal Koblitz. (18 hrs)							
		UNIT-III: Finite Fields, Quadratic Residues and Reciprocity							
		Recommended Chapter2 ofNeal Koblitz. (18 hrs)							
		UNIT-IV : Public Key Cryptography							
		The idea of public key Cryptography – RSA – Discrete log – Knapsack							
		Zero-knowledge protocols and oblivious transfer							
		Recommen	ded Chapte	er 4 ofNeal H	Koblitz.		(18 hrs)		
		UNIT-V: Primality , Factoring, Elliptic curves and Elliptic curve crypto							
		systems							
		Pseudoprimes – The Rho method – Fermat factorization and factor bases - The continued fraction method - The quadratic sieve method							
		Recommended Chapter 5, sections 1,2,3 & 5, Chapter 6, sections 1& 2							
ofNeal Koblitz.						(18 hrs)			
Recommen	ded Text	Neal Koblitz, A Course in Number Theory and Cryptography, Springer- Verlag, New York,1987					y, Springer-		

Reference Books	1.I. Niven and H.S.Zuckermann, <i>An Introduction to Theory of Numbers</i> (Edn. 3), Wiley Eastern Ltd., New Delhi,1976
	2. David M.Burton, <i>Elementary Number Theory</i> , Brown Publishers, Iowa,1989
	3. K.Ireland and M.Rosen, A Classical Introduction to Modern Number Theory, Springer Verlag, 1972
	4. N.Koblitz, Algebraic Aspects of Cryptography, Springer 1998

Semester – IV

Title of the Course		COMPLEX ANALYSIS- II							
Core Paper	Core Paper Number		XIII						
Category	Core- XIII	Year	II	Credits	4	Course Code			
		Semester	IV			Code			
Pre-requisit	e	Complex Analysis-I and Real Analysis							
Pre-requisite Course Outline		Product devices theorem – I Recomme Lars V. Ahlf UNIT-II : Rie Behaviour – Conformal Schwarz-Ch Harmonic F Harnack's p Recomme Sections 2. Ahlfors UNIT-III : El functions Recomme ofLars V. Ah UNIT-IV : W $\zeta(s)$ and $\sigma($ The Conform Recomme UNIT-V: An Sheaves – S Arcs – Hom Recomme	on – Equicor Families of ar Inded Chapte ors - Use of the F mappings of ristoffel form - unctions : Fu principle. Inded Chapte 1 to 2.3 (Om liptic function Inded Chapte alfors eierstrass Th s) – The diffe mal mapping nded Chapte alytic Contin fections and I otopic curves nded Chapte	Extension of ntinuity – N nalytic function er 5 : Section Reflection Pr polygons :B nula – Mapp unctions with er 6 : Section it section 2.4 ns : Simply p er 7 : Section reory : The V rential equa by $\lambda(\tau)$. er 7 : Section uation :The V Riemann sur s – The Mon er 8 : Section	$\zeta(s)$ to the ormality ar ons – The C as 4.1 to 4.4 \overline{r} : Statemer inciple. ehaviour at ing of a rect mean valu as 1.1 to 1.3 4), Section periodic fun as 1.1 to 1.3 Veierstrass (tion – The r as 3.1 to 3.5 Weiesrtrass faces – Ana odromy The as 1.1 to 1.7	whole plane – nd compactnes Classcial Definit 1, Sections 5.1 Int and Proof – E an angle tangle. Ie property – 3 (Omit Section 3.1 and 3.2 of ctions – Doubly 3, Sections 2.1 <i>(p</i> -function – The modular equation) 5 of Lars V. Ahlf Theory – Germ lytic continuation corem – Branch 7 of Lars V. Ahlf	as – Arzela's ion to 5.5 of Boundary a 1.4) Lars V. γ periodic to 2.4 he functions on $\lambda(\tau)$ – fors and on along a points. fors		
Recomment	ded Text	Lars V. Ahlfors, <i>Complex Analysis,</i> (3 rd Edition) McGraw Hill Book Company, New York, 1979.							

Reference Books	1.H.A. Priestly, <i>Introduction to Complex Analysis</i> , Clarendon Press,Oxford, 2003.
	2.J.B.Conway, <i>Functions of one complex variable</i> , Springer International Edition, 2003
	3.T.WGamelin, Complex Analysis, Springer International Edition, 2004.
	4.D.Sarason, Notes on Complex function Theory, Hindustan Book Agency, 1998

Core Paper XIV Differential Geometry

Unit I - Curves in the plane and in space :

Curves, parametrisation, arc length, level curves, curvature, plane and space curves. Recommended *Chapters 1 and 2.of*A. Pressley

Unit II - Surfaces in space :

Surface patches, smooth surfaces, tangents, normals, orientability, examples of surfaces, lengths of curves on surfaces, the first fundamental form, isometries, surface area. Recommended *Chapter 4 - 4.1, 4.2, 4.3, 4.4, 4.7 and Chapter 5 - 5.1, 5.2, 5.4of*A. Pressley

Unit III - Curvature of surfaces:

The second fundamental form, Curvature of curves on a surface, normal, principal, Gaussian and mean curvatures, Gauss map. Recommended *Chapter 6 - 6.1, 6.2, 6.3 and Chapter 7 - 7.1, 7.5,7.6ofA*. Pressley

Unit IV - Geodesics :

Geodesics, geodesic equations, geodesics as shortest paths, geodesic coordinates. Recommended *Chapter 8 - 8.1, 8.2, 8.4, 8.5of*A. Pressley

Unit V - TheoremaEgregium of Gauss :

TheoremaEgregium, isometries of surfaces, Codazzi-Mainardi equations, compact surfaces of constant Gaussian curvature. Recommended *Chapter 10of*A. Pressley

<u>Recommended Text</u> :

A. Pressley, *Elementary Differential Geometry*, Springer-Indian Edition, 2004.

Reference Books :

- 1. J.A. Thorpe, *Elementary Topics in Differential Geometry*, Springer-Indian edition.
- 2. E.D. Bloch, A First Course in Geometric Topology and Differential Geometry, Birkhauser, 1997.
- 3. M.P. doCarmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

Core Paper XV Functional Analysis

Unit I: Normed Spaces – Riesz lemma – Continuity of Linear Maps.

Recommended Chapter-II: Sec 5.1 to 5.7, 6.1 to 6.5 of B.V. Limaye

Unit II: Bounded Linear Maps – Hahn Banach Theorems – Hahn-Banachseparation theorem – Hahn-Banachextension theorems, Unique Hahn BanachExtensions – Banach Spaces.

Recommended Chapter-II: Sec 6.6 to 6.8, 7.1 to 7.11, 8.1 to 8.4ofB.V. Limaye

Unit III: Uniform Boundedness Principle - Resonance theorem - Closed Graph Theorem-

Open mapping Theorem – Bounded Inverse Theorem – Two-norm theorem.

Recommended Chapter-III: Sec 9.1 to 9.3, 10.1 to 10.7, 11.1 to 11.3ofB.V. Limaye

Unit IV: Spectrum of Bounded Operator - Weak and Weak* Convergence -

Bolzano-Weierstrass Property –Reflexivity.

Recommended Chapter-III: Sec 12.1 to 12.5

Chapter-IV: Sec 15.1 to 15.4, 16.1 to 16.4ofB.V. Limaye

Unit V: Inner Product Spaces – Orthonormal Sets – Bessel's Inequality – Bounded

Operators –Normal, Unitary and Self - Adjoint Operators.

Recommended Chapter-VI: Sec 21.1 to 21.3, 22.1 to 22.2, 22.4 to 22.7

Chapter-VII: Sec 25.2, 26.1 to 26.3ofB.V. Limaye

<u>Recommended Text</u> :

B.V. Limaye, Functional Analysis, New Age International, 1996. **Reference Books :**

- 1. W.Rudin Functional Analysis, Tata McGraw-Hill Publishing Company, New Delhi, 1973
- 2. G.Bachman&L.Narici, Functional Analysis Academic Press, New York, 1966.
- 3. C. Goffman and G.Pedrick, First course in Functional Analysis, Prentice Hall of India, New Delhi, 1987
- 4. E. Kreyszig, Introductory Functional Analysis with Applications, John wiley& Sons, New York., 1978.
- 5. M.Thamban Nair, Functional Analysis. A First Course, Prentice Hall of India, New Delhi, 2002 *****

ELECTIVE PAPER IV

Title of the Course		MATHEMATICAL STATISTICS							
	Paper Number		XV						
Category	Elective-	Year	П	Credits	4	Course			
	IV	Semester	IV			Code			
		Semester	IV						
Pre-requisit	e	Basic Probability Theory							
Course Outl	Course Outline		UNIT-I : Sample Moments and their Functions: Notion of a						
				Distribution					
						listribution –			
					tion – Distri	ibution of sa	imple mean		
		from non-no	ormal popula	tions					
		Recommen	nded Chapte	r 9 : Sections	9.1 to 9.8of	M. Fisz			
			-	•		al test – Para			
			•			Imogorov The			
				-		rnov type – T			
		Wolfovitz and Wilcoxon-Mann-Whitney tests – Independence Tests by							
		contingency tables.							
		Recommended Chapter 10 : Sections 10.11							
		Chapter 11 : 12.1 to 12.7 of M. Fisz							
		UNIT-III: Estimation: Preliminary notion – Consistency estimation – Unbiased estimates – Sufficiency – Efficiency – Asymptotically most							
		efficient estimates – methods of finding estimates – confidence							
		Interva			U				
		Recommended Chapter 13 : Sections 13.1 to 13.8 (Omit Section 13.9)							
		ofM. Fisz							
		UNIT-IV :Analysis of Variance : One way classification and two-way							
		classification. Hypotheses Testing: Poser functions – OC function- Most							
		Powerful test – Uniformly most powerful test – unbiased test.							
		Recommended Chapter 15 : Sections 15.1 and 15.2 (Omit Section 15.3)							
		Chapter 16 : Sections 16.1 to 16.5 (Omit Section 16.6 and 16.7) of M. Fisz							
		UNIT-V : Sequential Analysis : SPRT – Auxiliary Theorem – Wald's							
		fundamental identity – OC function and SPRT – E(n) and							
		Determination of A and B – Testing a hypothesis concerning p on 0-1 distribution and m in Normal distribution.							
		Recommended Chapter 17 : Sections 17.1 to 17.9							
		(Omit Section 17.10) of M. Fisz							
Recommend	ded Text	M. Fisz , Probability Theory and Mathematical Statistics, John Wiley and							
		sons, New Your, 1963.							
<u> </u>									

Reference Books	1. E.J.Dudewicz and S.N.Mishra <i>,Modern Mathematical Statistics</i> , John Wiley and Sons, New York, 1988.				
	 V.K.RohatgiAn Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern New Delhi, 1988(3rdEdn) 				
	3. G.G.Roussas, A First Course in Mathematical Statistics,				
	Addison Wesley Publishing Company, 1973				
	4. B.L. Van der Waerden, Mathematical Statistics, G. Allen &				
	Unwin Ltd., London, 1968.				

ELECTIVE PAPER – V

STOCHASTIC PROCESSES

Unit I: Introduction - Specification of stochastic processes – Stationary processes – Martingales– Markov chains: Definitions and examples –Higher transition probabilities.

Recommended Chapter II: Sections 2.1 - 2.4,

Chapter III:Sections3.1 – 3.2of J.MEDHI

Unit II: Classifications of states and chains – Determination of higher transition probabilities.

Recommended Chapter III: Sections 3.4 – 3.5ofJ.MEDHI

Unit III: Poisson process - Poisson process and related distributions.

Recommended Chapter IV: Sections 4.1 – 4.2of J.MEDHI

Unit IV: Properties of generating functions of branching processes Probability of extinction

- Distribution of the total number of progeny - Conditional limit laws.

Recommended Chapter IX :Sections 9.1 - 9.5.1ofJ.MEDHI

Unit V: General concepts – M/M/1 steady state behaviour – Transient behaviour (Method

of generating function) – Birth and death processes in queuing theory : Multi channel models.

Recommended Chapter X :Sections 10.1 – 10.2, 10.3.2, 10.4.1, 10.4.2 of J.MEDHI

Recommended Text

Stochastic Processes by J.MEDHI, 2nd Edition, New Age International (P) Ltd., 1984.

Reference

- 1. Cinlar.E., Introduction to Stochastic Processes, Englewood Cliffs, Prentice -Hall
- Srinivasan S.K. and Mehata K.M., *Stochastic Processes*, 2nd Edition, Tata McGraw Hill, New Delhi, 1988.

Taylor H.N. and Karlin S., An Introduction to Stochastic Modeling, Academic Press.